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Abstract—Airborne sensors are often idle for much of their
flight, e.g., while the platform carrying them is in transit to
and from the locations of sensor tasks. The sensing needs of
many other potential information consumers might thus be
served by sharing such sensors, allowing other information
consumers to opportunistically task them during their otherwise
unscheduled time. Toward this end, we have developed Mission-
Driven Tasking of Information Producers (MTIP), a prototype
system for opportunistic sharing of airborne sensors. This paper
describes its implementation as an agent-based task allocation
system on top of the Marti Quality of Service (QoS)-managed
publish-subscribe information management system, and presents
simulations of a disaster response scenario demonstrating how
MTIP can increase the number of sensor tasks served as well as
reducing the number of UAVs required to serve a given set of
sensor tasks.

I. INTRODUCTION

Airborne sensor platforms are increasingly important
sources of information for many organizations, particularly
in time-critical situations such as management of emergency
situations like natural disasters, industrial disasters, or civil
unrest. Even as these platforms decrease in cost and increase
in availability and accessibility, improvements in Geographic
Information Systems (GIS) and information integration have
also greatly increased the number of potential information con-
sumers and potential uses for such information. In many cases,
however, airborne sensors are currently greatly underutilized.
For example, an air asset sent on a mission typically spends
much of its time in transit to and from the locations where
sensor tasks are intended to be executed.

This under-utilization provides an important opportunity:
if the operator of an airborne platform is willing to share
their sensor, then the sensor’s “down time” can instead be
used to gather information opportunistically as the platform
passes near locations or objects of interest to other information
consumers. Consider, for example, the scenario illustrated in
Figure 1, in which a disaster response team is using a ScanEa-
gle UAV to check the San Luis Dam for damage following a
large earthquake in the San Francisco Bay area. The planned
flight path to check the dam also flies close to many other
pieces of critical infrastructure, including airports, cell phone
towers, and fire departments. Sensor sharing can allow other
disaster response teams, which may want information about
these other locations, to survey them while the UAV is in
transit to and from the dam.

In this way, the benefits of airborne sensing can be made
available to organizations without their own sensor platforms.

Fig. 1. Example of sensor sharing with MTIP: the planned path of a
UAV flight intended to check the San Luis Dam for earthquake damage
(cyan line with translucent blue air-asset tactical symbols) also flies close
enough (magenta sight lines) to survey other critical infrastructure (red icons),
including the San Martin airport, the South Valley Hospital and its heliport,
and a number of fire departments and cell phone towers.

Organizations with their own platforms can also benefit, either
by increasing efficiency by having some of their needs satisfied
by others’ platforms, or by increasing resilience through
increasing the number of platforms asked to execute a given
task.

To realize this vision of shared distributed sensing, we
have implemented Mission-Driven Tasking of Information
Producers (MTIP), a prototype system for sharing of airborne
sensors. Following a brief review of related work in Section II,
Section III describes the MTIP architecture, which joins
an agent-based task allocation mechanism with the publish-
subscribe framework provided by the Marti QoS-driven in-
formation management system [1], [2]. Section IV presents
experimental validation of both the airborne sensor-sharing
concept in general and the MTIP prototype in particular using
a disaster response scenario, and finally Section V summarizes
contributions and discusses future work.

II. RELATED WORK

Many organizations already implement schemes for sharing
airborne sensor data (along with many other types of informa-
tion) through a variety of information management systems,
especially for maintaining situational awareness in emergency
or military situations (e.g., [2], [3], [4], [5], [6], [7], [8], [9]).



While these systems work quite well for sharing information
to interested parties (and MTIP is in fact built upon the
system described in [2]), they provide no mechanism for
allocating sensors to gather that information. Sensor sharing
is thus implemented by interactions between humans, leading
to problems in discovery and competing with other critical
tasks for their attention, which contributes to the current under-
utilization of sensors.

Collective sensing from multiple platforms, whether air-
borne or otherwise, has been an object of considerable interest
for many years [10]. Much of the work in this area has
focused on networks comprising many sensors controlled
by a single organization (e.g., [11], [12], [13], [14]), rather
than the sharing of underutilized sensors between different
“owners” and organizations. More recently, however, interest
has developed in opportunistic sensing systems [15], [16],
[17], particularly those that take advantage of human-carried
sensors such as those found in smart phones. While a number
of such systems and mechanisms for such systems have been
developed (e.g., [18], [19], [20], [21], [22]), these have focused
primarily on diffuse tasks of large space and time extent,
such as noise or pollution monitoring, in which any given
sensor is only able to contribute a small portion of the sensing
capability needed for the task. For these systems, the typical
use case considers allocation of a large number of sensors to
a relatively small number of diffuse tasks. Moreover, there is
typically little competition between tasks for sensor resources,
since most scenarios investigated have primarily involved non-
directional sensors. MTIP, by contrast, focuses on higher-
performance sensors such as airborne cameras and more
specific and localized tasks, in which the focus is instead on
effective allocation of a large number of potentially competing
individual tasks to individual sensors.

III. MISSION-DRIVEN TASKING OF INFORMATION
PRODUCERS (MTIP)

The purpose of MTIP, from a high level, is to address
a deficiency the currently exists in most publish-subscribe
Information Management Systems (IMS). Publish-subscribe
systems decouple information producers from information
consumers (thereby enabling scalability and resilience desir-
able in an IMS). Subscriptions are made by consumers as
a way to inform the IMS what information is of interest
to that consumer. This subscription request/filter is used for
“brokering” messages — i.e., if the IMS receives a message
that matches the subscription’s criteria, it is forwarded to
the consumer who made the subscription. However, it is
possible that no information producers collect information that
matches the subscription’s criteria; in this case the consumer’s
information needs go unmet.

MTIP addresses this deficiency by assigning tasks to in-
formation producers that have the capability and availability
to collect information that is of interest to a consumer. In
particular, by opportunistically increasing sensor utilization,
MTIP can be used to achieve any or all of the following goals
(depending on choices in deployment):
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Fig. 2. Information requests into a shared information management system,
such as Marti [1], [2], may go unanswered if no information producer is
currently planning to gather the requested information. MTIP uses semantic
information extracted from both information requests and other indications
of user interest (e.g., publications of plan or location-of-interest information
to other users) to task shareable sensors to gather the requested information,
which is then returned to them normally via the shared information manage-
ment system.

• Increasing the number of information gathering tasks that
can be served by a given set of sensor platforms.

• Reducing the number of sensor platforms required to
perform a given set of information gathering tasks.

• Increasing resilience of information gathering tasks by
serving them on multiple platforms.

A. Context: Marti and TAK

In order to give a clear path to adoption and deployment,
MTIP is designed to operate with and extend the capabilities
of existing systems. In particular, MTIP augments the Team
Awareness Kit (TAK) ecosystem of Situation Awareness (SA)
tools. The TAK ecosystem is composed of a set of clients
such as ATAK [6] and/or its Windows or iOS ports (WinTAK
and iTAK respectively) and an IMS, Marti a.k.a. TAKServer,
which is an advanced tactical information management system
that can be deployed on a variety of hardware platforms and
any IP network [1], [2]. While ATAK can function in serverless
environments, there are times when a server is needed to
bridge networks to provide Beyond Line-of-Sight (BLOS)
communication [2] or provide a communications substrate
when networks otherwise prevent clients from communicat-
ing directly (e.g., those separated by firewalls or lacking
IP addressability, such as commercial cellular) in austere
conditions [23]. In those cases, Marti acts as the IMS to
decouple information producers from information consumers,
allowing new producers or consumers to be added on demand.

Marti uses a publish-subscribe model: information produc-
ers (publishers) are decoupled from information consumers
(subscribers). Publishers submit information to Marti with
metadata describing the time, location, and content of the in-
formation. Subscribers register a request for their information
needs (i.e., their subscription) and Marti delivers published
information matching that subscription. Marti can also archive
published information for consumers to query for information
that was published in the past. Further, Marti provides QoS
management to prioritize and shape traffic to the network’s
available bandwidth. Full details of the Marti system are
available in [1] and [2].



B. MTIP Architecture

The MTIP architecture is built around Marti, as shown in
Figure 2. With MTIP, users share information normally, by
contributing it to or requesting it from Marti. These publica-
tions and subscriptions are intercepted and passed through a set
of Semantic Extractors, which derive user interest information
from this traffic, transforming it into sensor task requests that
would satisfy the end-user’s information needs.

At present, MTIP’s semantic extractors recognize five types
of information:
• Sensor Points of Interest (SPoI),
• Routes (i.e., paths),
• Areas of Interest (AoI),
• Information Requests (Subscriptions / Queries),
• Geospatial Annotations (e.g., KML).

From these, the semantic extractors produce three classes
of sensor tasking requests compliant to a specified platform
interface: “point” tasks focused on a discrete location, route
tasks, and polygonal area tasks. Each task request can also
be annotated with additional requirements information derived
from the initial communication flow by the semantic extrac-
tors, including the following properties:

Property Description
Name Textual description of the request for display
Priority Importance of the request
Start Time Time by which the request must start execution
End Time Time by which the request must be completed
Resolution Desired ground resolution of the resultant image(s)
Sensor Mode Desired mode for multi-modal sensors
Radius The radius of interest surrounding the AoI
Revisit Time Desired repetition frequency of a recurring task

These task requests are passed to a Task Allocation com-
ponent in order to be assigned to particular platforms whose
sensors can fulfill the requests. The task allocation component
also receives advisements of the position, status, and path
plan (if available) of all the platforms via advertisements
from the platforms themselves. With this information and the
current state of task allocation, the task allocation component
determines which tasks will be assigned to which platforms (as
elaborated in Section III-C): any given task might be assigned
to one platform, multiple platforms, or even no platforms at all
if none is available that can satisfy the task. Task requests are
then dispatched to platforms, whose operators decide whether
and how to carry them out, returning information to the task
allocation component about whether they accept or reject
requests they have been given, when tasks will be started and
completed, and the expected quality of the resultant product.1

The task allocation component can then adjust its assignment
in response to this feedback, canceling or reassigning tasks as
necessary.

1Note that MTIP does not currently include any explicit representation of
costs, payments, or other information about incentives: this is because for
the types of scenarios initially considered, these issues are typically handled
separately at an organizational level through mechanisms such as mutual aid
agreements and directives to organization members. Likewise, every platform
is assumed to be “owned” by some organization, which has ultimate authority
over its route and availability for tasking.
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Fig. 3. In MTIP’s agent-based task allocation, agents for current platforms
(light blue) and projections (translucent blue) along the platform’s anticipated
trajectory communicate (purple arrows) with task agents (red) within line-of-
sight and sensor range limitations to determine which tasks will be assigned
to which platforms and on which segments of their anticipated route.

Finally, as platforms carry out their assigned tasks, the
sensor data that they produce is placed under management
by the Marti system, where it is ultimately delivered to users
in accordance with their subscriptions.

C. Agent-Based Task Allocation

MTIP uses an agent-based approach to task allocation,
which we have chosen over typical planning or optimization
algorithms for three key reasons. First, with an appropriate
choice of algorithm, agent-based planning executes rapidly and
its current state always provides a viable (though possibly still
improving) allocation plan, which means that it can be safely
used in real-time situations with strict time constraints. The
cost of this speed is that task allocations will generally be
somewhat sub-optimal, though this need not be a significant
cost (as we will see in Section IV-C).

Second, our agent-based approach is also well-suited for
rapid dynamic replanning, which can be executed simply by
modifying the agent representation and allowing the agents to
continue interacting. Third, although currently all agents are
located in the task allocator, the agent-based approach provides
a natural path toward further decentralization whereby plat-
form agents and nearby goal agents are mirrored in platform
clients. This mirroring would then enable platform clients to
dynamically reallocate tasks amongst themselves even when
communication with the task allocator is limited or unavail-
able, yet still allow fast and efficient planning under normal
communication conditions.

The MTIP agent-based task allocation mechanism uses
two classes of interacting agents: platform agents and task
agents (Figure 3). For each airborne platform, an agent is
created for its current position along with a set of projected
agents at intervals of a parametrically specified resolution
along its anticipated future trajectory (similar to the polyagents
approach presented in [24]). Likewise, one or more agents is
created for each task: point tasks and other tasks with small
extent in space and time are represented by a single agent;



let task = if(self.isTask()) { [self.getTask()] } else { [] };
let visibleTasks = unionHood(nbr(task));
// Computation of assignment state variable:
rep(assignment <- []) {

// Task agents determine which platform agents have assigned them...
let assignedBy = unionHood(mux(nbr(assignment).intersection(task).size()>0) { [nbr(self.getDeviceUID())] } else { [] });
// ... and platform agents note the unassigned (but assignable) tasks nearby
let unassigned = self.validTasks(unionHood(nbr(mux(assignedBy.size()==0) { task } else { [] })));
// Computed the updated assignment
if(self.isPlatform()) {
let maybeExpanded = // With probability p assign, assign a random unassigned task

if(unassigned.size() > 0 && random() < p_assign) {
[unassigned.get(floor(random()*unassigned.size()))].mergeAfter(self.validTasks(assignment))

} else {
self.validTasks(assignment)

};
// Fill out any extra time slots with visible tasks already assigned to other platforms, and discard any assignments more than the maximum
let unassignedVisible = self.validTasks(visibleTasks).subtract(maybeExpanded);
self.setAssignment(maybeExpanded.mergeAfter(unassignedVisible).subTupleStart(max_assigned));

} else {
assignedBy

};
};

Fig. 4. Simple Protelis task assignment algorithm used by MTIP for the work presented in this paper.

tasks with larger extent are broken up into intervals (routes) or
tiles (areas and circles) at a parametrically specified resolution.

A bipartite network between task and platform agents is
then formed by creating an edge between each task agent and
every current or projected platform agent that could plausibly
carry out that task. This is determined by sensor range (e.g.,
close enough to achieve a specified camera resolution) and by
line of sight, as computed from the planetary horizon and GIS
terrain data—in particular, our implementation accomplishes
this with the aid of NASA’s WorldWind GIS environment [25].
In the work reported in this paper, all sensors and task
requirements were assumed to be homogeneous and satisfiable
at any time, but arbitrary information and constraints may be
used to determine task/platform compatibility. The agents then
communicate with one another along these edges in order to
determine which tasks will be allocated to which platforms
and on which segments of their anticipated route.

For the work reported in this paper, we have used the simple
sub-optimal algorithm2 shown in Figure 4, implemented in
the Protelis aggregate programming framework [26], [27]. As
with all programs based on field calculus [28], this algorithm
executes in rounds. The nbr statements indicate values that
are shared between agents in each round (i.e., “values from this
agent’s neighbors”), while unionHood computes the union
of sets shared by neighbors, thus together implicitly imple-
menting inter-agent communication. In this simple algorithm,
devices track one state variable, assignment, which for
platform agents is the set of tasks they are assigned and for
task agents the set of platforms to which they are assigned.
In each round, task agents recompute the set of platforms to
which they are currently assigned and share this information
with neighboring platform agents. Meanwhile, platform agents
select up to max_assigned of their neighboring (i.e., poten-

2Note that a great variety of potential alternative algorithms exist; here we
do not make any comparison with alternatives, but assert only that this simple
algorithm is sufficient to validate the MTIP approach.

tially visible) and valid (i.e., non-rejected and with compatible
time and sensor properties) tasks, in the following priority
order:

1) One randomly selected neighboring task that is currently
not assigned to any platform (but only with probability
passign, for purposes of symmetry-breaking; for the ex-
periments reported in this paper, we use passign = 0.5).

2) Tasks that have already been assigned to the platform
agent, to promote assignment stability. If displaced by
an unassigned task, these tasks may be able to be taken
up by another nearby platform agent.

3) Any other visible tasks, up to the assignment limit.
The algorithm is executed until it converges or until a set
number of rounds or timeout have elapsed, at which point
any changes to the set of task assignments is dispatched to
platform clients to allow them to update their execution plans.
When the situation is updated, the algorithm executes again.

Note that while better algorithms are clearly possible and
this algorithm can be enhanced in many ways (e.g., by
including task priority information and accounting for variable
expected execution time for tasks), this algorithm is fast,
simple, and already enables a vast improvement over the
common current case of highly underutilized airborne sensors
(as we demonstrate in Section IV-C), and therefore serves well
enough for a first implementation of MTIP.

IV. EXPERIMENTAL VALIDATION

In order to validate the MTIP sensor-sharing concept and
to test our system implementation, we created a simulation
of a disaster response scenario using publicly available GIS
data about critical infrastructure. Evaluating this scenario,
we find that there is a high potential for sensor sharing
between different classes of infrastructure, providing evidence
in support of the general sensor-sharing concept. We further
find that our MTIP architecture implementation produces fast
and effective task allocations in this scenario, as expected.



(a) All infrastructure locations (b) Power infrastructure and UAV route (c) All UAV routes

Fig. 6. (a) Set of all 666 critical infrastructure survey targets in our scenario, indicated by standard emergency management points of interest icons or
polygonal areas. (b) UAV route example, of the single UAV route planned for surveying the 14 critical infrastructure power plants, with the base position
indicated by a standard airborne asset icon and projected positions indicated by translucent icons. (c) Set of all 14 UAV routes, with each color indicating a
different infrastructure class and air asset icons indicating class bases.

Infrastructure Class # Objects # UAVs UAV Base (Lat/Lon)
Airports 25 2 37.625°, -122.383°
Cell phone towers 251 3 37.418°, -121.883°
Dams 152 2 37.941°, -122.261°
Fire Departments 160 3 37.779°, -122.390°
Heliports 28 1 38.466°, -121.423°
Hospitals 28 1 37.432°, -122.178°
Military Installations 8 1 37.404°, -122.028°
Power Plants 14 1 37.219°, -121.747°
Total 666 14

Fig. 5. The San Francisco disaster response scenario considers eight classes
of critical infrastructure: for each class of critical infrastructure, we use a
publicly available GIS data set for survey targets and specify a manually-
planned set of UAV routes to provide coverage of all of the targets in that
class.

A. San Francisco Disaster Response Scenario

For evaluation of MTIP, we consider a scenario in which a
major earthquake has just hit the San Francisco Bay area and a
number of different disaster response teams are attempting to
assess damage with UAVs, prefatory to preparing a response.

In particular, we consider eight classes of critical infrastruc-
ture, as listed in Figure 5. Given typical organization structures
and the specialization needed to deal with managing different
classes of infrastructure, it is reasonable to assume that each
class of critical infrastructure will have its own dedicated
response team or teams. Thus, for instance, a disaster response
team evaluating the integrity of dams will likely be different
personnel in a different organization than one that is attempting
to ensure that the wireless infrastructure on cell towers is
operational.

For our scenario, survey targets for each class of infras-
tructure are populated from publicly available GIS data sets,
filtered to consider only locations in the range latitude 37.0° to
38.5° and longitude -123.0° to -121.0° (roughly, North/South
from Santa Cruz to Sonoma County and inland through the
Sacramento and San Joaquin Valleys). The set of all 666
critical infrastructure survey targets is shown in Figure 6(a).

For each class of critical infrastructure, we assumed one of
the survey targets is the operating base for a disaster response
team and manually planned a set survey routes for 1-3 UAVs
from that base to cover the rest of the survey targets in the
class, with the number of routes depending on the number
and geographical dispersion of targets to be surveyed. Manual
planning was carried out for each infrastructure class indepen-
dently, on a map showing only survey targets and UAV routes
for that infrastructure class. The preferred altitude planned
for surveys is 500 meters, but higher over the various coastal
mountain ranges to a maximum of 1500 meters. Figure 6(b)
shows an example, the single UAV route planned for surveying
the 14 critical infrastructure power plants, while Figure 6(c)
shows the set of all 14 UAV routes, with each color indicating
a different infrastructure class. Hereafter, when we refer to a
“set of UAVs” it means the group of UAVs associated with a
particular infrastructure class.

For survey UAVs, we chose to consider the Boeing ScanEa-
gle, a small high-endurance UAV with an approximately 3-
meter wingspan and 20 kg mass, used by a number of military
and civilian organizations around the world. Based on its
published specifications, we assume a flight speed of 40 m/s,
a 6000 meter operating ceiling, and up to 24 hours endurance
(though the planned survey routes of our scenario are all less
than four hours). Standard equipment options for ScanEagles
includes a high-resolution imager with up 170x zoom, so we
also assume an effective visual survey range of up to 20 km
for initial damage assessment.

For planning purposes the survey routes are quantized into
projections at intervals of 5 minutes between projections (i.e.,
for UAV locations 12 km apart along the planned route).
Finally, each UAV is assumed to be able to adequately survey
three targets per minute, thus implying a maximum of 15
survey targets per planning location.

All told, the set of planned survey routes spans 454 planning
locations, with the average mission planned to survey approx-



imately 50 targets over a period of approximately two and
a half hours. Even for the densest planned route, surveying
dams, the mean number of targets per planning location is
only 2.81, meaning that under these conditions most time is
indeed spent in transit rather than on mission execution, and
that there is ample opportunity for sensor sharing. This is,
of course, dependent on our assumptions, and slower surveys
or faster UAVs will reduce the opportunity for sharing; given
the use of real GIS data and UAV specifications, however,
we believe that it is reasonable to expect qualitatively similar
sparseness to be the case for many real-world deployments.

B. Potential for Sensor Sharing

We begin by assessing the theoretical potential for sensor
sharing across different organizations, regardless of our partic-
ular implementation of this capability in the MTIP platform.
The key hypothesis of MTIP is that commonalities in the
physical and human geographical environment are likely to
mean that an aerial platform route planned for one set of
sensor tasks will likely pass close to other classes of sensor
tasks as well. Critical infrastructure, for example, is not
placed arbitrarily, but tends to be highly constrained by the
distribution of population and major physical features such as
rivers and mountains. In our scenario, we would thus expect
that any given set of UAVs is likely to have good visibility on
many of the survey targets for other classes of infrastructure,
despite being planned independently. This is particularly likely
to be true in the case of UAV routes that have been planned
for the more numerous and pervasive classes of infrastructure:
Figure 7(a), for example, shows that between them, the three
UAV routes planned for covering cell phone towers also cover
all hospitals and power plants.

To evaluate this hypothesis, we ran two experiments in
which we ran the MTIP system with no constraints on the
number of targets that could be covered for a given route
segment. In this configuration, every survey target is assigned
to every route segment from which it is visible and within
sensor range, thereby showing the maximum potential for
sensor sharing.

For the first test, we ran the planned UAV routes for each
class of infrastructure individually against the survey targets of
each class of infrastructure. Figure 7(b) shows the fraction of
survey targets in each infrastructure class that can be observed
for each of the 64 pairings. On the diagonal, of course,
every set of UAVs perfectly covers the infrastructure class for
which its routes were planned. UAVs planned to cover highly
dispersed classes of infrastructure, such as cell phone towers
and fire departments, cover most other infrastructure classes
quite well. Even the most small and geographically constrained
classes of infrastructure, however, such as power plants and
military installations, turn out to provide coverage of a fairly
high proportion of most other classes of infrastructure.

Complementarily, for the second test we ran a “leave one
out” test in which we ran the survey targets for one infras-
tructure against the set of planned UAV routes for all other
classes of infrastructure, showing how well an infrastructure
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Fig. 7. A shared geographical environment makes it likely that UAVs
planned for one task will provide good coverage for others as well: (a) for
example, UAVs tasked to survey cell towers also cover all hospitals and power
plants. Unconstrained task assignment shows sensor sharing potential (b) for
individual sets of UAVs and classes of survey targets, and (c) for a class of
targets to be covered by some UAV from any other class.
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Fig. 8. Performance of MTIP sensor sharing with respect to variable numbers
of UAVs (u) or survey targets (t): (a) even with few UAVs and many targets,
the vast majority of targets are covered by at least one UAV, (b) most targets
receive coverage from multiple UAVs, and (c) the time required for MTIP to
make and dispatch allocation plans scales approximately linearly with both
number of UAVs and number of targets. All graphs show mean over 10 trials
±1 standard deviation.

class might potentially be covered by relying entirely on sensor
sharing from the UAVs of other teams. Figure 7(c) shows the
fraction of survey targets in each infrastructure class that can
be observed by the UAV routes planned for the other classes.
Here, every class of survey targets is better than 95% covered,
and in fact only two are not 100% covered, the only exceptions
being a set of six small dams in isolated valleys in the Point
Reyes National Seashore and a single volunteer fire department
in a small town in a rural zone at the Eastern edge of the area
under consideration.

These experiments thus indicate that the MTIP sensor shar-
ing concept is indeed likely to be valid and of significant use
in real-world tasks such as disaster response, in which there
is significant geographical correlation in the likely interests of
different sensor users.

C. Efficacy of MTIP Sensor Sharing

Having established that most potential targets have the
potential to be observed by most sets of UAVs, we now
evaluate the efficacy of our MTIP implementation in allocating
survey targets to UAVs with constrained time resources. For
these experiments, we run the full MTIP system in an emulated
network environment, in which each UAV is represented by a
dummy process implementing a simplified version of a Marti
platform client, and with the previously stated limit of 15
survey targets per UAV planning location.

We evaluate both the efficacy and scalability of the system
through two tests with randomly selected subsets of the
system. For the first test, we randomly select u sets of UAVs
and execute MTIP to plan for surveying all eight sets of critical
infrastructure, ranging u from 1 to 8 and running 10 trials for
each condition. The second test fixes the number of randomly
selected sets of UAVs to u = 3 and executes MTIP to plan for
surveying t randomly selected sets of survey targets, ranging
t from 1 to 8 and running 10 trials for each condition.

Figure 8 summarizes the results of these two experiments.
Figure 8(a) shows that MTIP effectively implements sensor
sharing even with many consumers and few airborne resources:
just two sets of UAVs is enough to reliably cover the vast
majority of survey targets and 5 UAV sets are enough to
reliably cover all but a few particularly difficult to see survey
targets, Complementarily, with a fixed number of sets of
UAVs, performance degrades by only a small amount as the
most densely populated areas begin to saturate UAV sensor
sharing capacity. Indeed, as Figure 8(b) shows, there is enough
excess sensor capacity to allow most targets to be surveyed by
multiple UAVs. This also points out a more subtle capability
of sensor sharing enabled by MTIP: even for those groups
that are operating their own UAVs, mission resilience can be
improved by “backing up” their UAVs with sensor sharing to
take advantage of spare sensor capacity on other UAVs that
fly nearby routes.

Finally, Figure 8(c) shows the time required for MTIP to
make and dispatch allocation plans for these complex scenarios
on a portable COTS machine (MacBook Air with 1.7 GHz
Intel Core i7 and 8 GB RAM). The time scales approximately
linearly with both number of UAVs and number of targets,
remaining quite reasonable even for cases comprising more
than 1000 interacting agents. Note also that in the current
prototype implementation, a significant majority of this time
is spent in computation of terrain intersections via a fairly
simple and unoptimized method and in dispatching thousands
of assignments of survey targets to UAVs using a separate
HTTP session for each assignment. There is thus much room
for improvement to enable even larger scale sensor sharing.

V. CONTRIBUTIONS

As we have demonstrated, there are significant opportunities
to improve the overall efficacy of airborne sensor platforms
by making their sensors available for opportunistic use by
other information consumers. Our prototype MTIP system
provides an implementation of such a framework, in the



context of a publish-subscribe IMS, and we have validated
both this system and the overall sensor sharing concept using
an emulated scenario of disaster response in the San Francisco
area. While the present work tests only this region, the region
tested is highly heterogeneous, including the flat rural lands
of the Sacramento and San Joaquin Valleys, extremely high
population density urban areas near San Francisco, and largely
unpopulated regions of high topographic relief. Furthermore,
spot inspection of some infrastructure classes in other areas
indicates the observed patterns of overlap are likely to hold
elsewhere as well.

Directions for future work include improvement of the
agent-based allocation algorithm (e.g., to make use of time
constraints and additional information about sensors and task
requirements), investigation of the dynamics of replanning
and response to emergent events, and leveraging the agent-
based allocation architecture to further decentralize MTIP and
allow nearby platforms to communicate and replan even when
their communication with the central dispatcher is limited
or unavailable. There are also a number of opportunities for
improving efficiency and scalability in the current prototype. It
may also be of interest to consider adaptation of the MTIP ap-
proach to other architectures, such as incentive driven sensing
or non-publish-subscribe information management systems.
Finally, there are a number of improvements that can be made
in the MTIP prototype in order to move it toward deployment,
such as elaboration of the priority metrics and taking sensor
task complexity into account in planning.
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