
Lightweight Simulation Scripting
with Proto

Jacob Beal, Kyle Usbeck, Brian Krisler
Raytheon BBN Technologies

kusbeck@bbn.com
Spatial Computing Workshop @ AAMAS 2012

Work partially sponsored by DARPA; the views and conclusions contained
in this document are those of the authors and not DARPA or the U.S.
Government.

1

Serious Games

• Training
– Reduce classroom lecture
– Promote active learning

• US Navy VESSEL trainer

2

Game Engines

• Simplify creating complex, realistic simulations
• De-couples agent and terrain modeling and

visualization (e.g., rendering, lighting, geo-
typical terrain)

3

Problem

• Every game engine has a scripting API
• APIs allow control of all objects in the game
• Game Engines are limited in their support for

quickly and easily scripting behaviors of large
groups of autonomous agents

• Multi-Agent System (MAS) toolkits and simulators
lack realism and features for spatial-aggregate
programming

Realism

Game Engines

Scalable
Aggregate

Control MAS Toolkits

Spatial Computing

4

Spatial-Aggregate
Programming

http://www.youtube.com/watch?v=P5vuWJft32g Shibuya Crossing, Tokyo
5

Solution

• Combine modern game engine with spatial
approach to scalable multi-agent behavioral
scripting

roto

6

 Unity

• What is Unity?
• Why Unity?

– Realistic physics simulator
– Simple/Realistic terrain modeling
– Online market for “assets”

7

 Proto

• What is Proto?
• Why Proto?

– Global-to-local compiler
– Extensible VM / Simulator Design

8

Approach

• Proto’s global-to-local compiler & VM
• Unity’s simulation environment
• Novel agent scripting library:

– Group behavior primitives
– Imperative-style scripting

roto
9

Architecture

roto

Global-to-Local
Compiler

Proto Virtual
Machine for Unity

 roto Plug-in

Runtime Execution
Loop

10

Invoking the Proto Compiler

Global-to-Local
Compiler roto Plug-in

Start the game

Send Proto program
to compiler

We designed a Unity plug-in for Proto that invokes
Proto’s compiler, which in-turn creates byte-code

to be executed by the virtual machine(s). 11

roto

Proto byte-code

A Proto VM Implementation
for Unity

Proto Virtual
Machine for Unity

 roto Plug-in

Runtime Execution
Loop

We created a Unity plug-in
that implements the required

platform-specific functions
from the Proto virtual

machine reference
implementation using tools

from the Unity API.

12

Agent attributes

Temporal update, environmental changes

Agent Scripting Library

roto

We created an agent scripting library that extends the
Proto language with group behavior primitives and

imperative-style macros.

13

Group Behavior Primitives

Random Walk Flock / Flock-to Cluster-by

Toward Disperse / Scatter 14

Imperative-Style Agent
Scripting

• Proto is a pure-functional language based on
LISP.

• Doesn’t map well to the typical agent scripting
user’s imperative approach.

15

Imperative-Style Agent
Scripting

• Macro functionality added to Proto
• Added macros to make Proto read more

sequentially, event-driven, and/or behaviorally

(def red-advance (red-team blue-team)
 (group-case
 (behavior-of red-team ;; Red team behavior:
 (where in-group
 (flock-to (tup 0 0))) ;; go to Blue starting location
 (behavior-of blue-team ;; Blue team behavior:
 (on-trigger (can-see red-team) ;; when Red is near...
 (scatter (away-from red-team))) ;; flee from Red!
 (default (tup 0 0))))))

16

Agent Scripting Library

(group-case
 (behavior-of MEMBERSHIP-TEST BEHAVIOR
 (behavior-of MEMBERSHIP-TEST BEHAVIOR
 ...
 (default BEHAVIOR)...)))

(where TEST BEHAVIOR)

(on-trigger TRIGGER BEHAVIOR)

(priority-list
 (priority NAME TEST BEHAVIOR
 (priority NAME TEST BEHAVIOR
 ...)))

(sequence
 ([stage|group-stage] NAME ACTION TERMINATION
 ([stage|group-stage] NAME ACTION TERMINATION
 ...
 [end-sequence|repeat])...))

Functional composition
still applies!

17 Just a sampler... More to come!

Example: Advance & Flee!

(def red-advance (red-team blue-team)
 (group-case
 (behavior-of red-team ;; Red team behavior:
 (where in-group
 (flock-to (tup 0 0))) ;; go to Blue starting location
 (behavior-of blue-team ;; Blue team behavior:
 (on-trigger (can-see red-team) ;; when Red is near...
 (scatter (away-from red-team))) ;; flee from Red!
 (default (tup 0 0))))))

18

Example: Deploy

19

Code Comparison

0
10
20
30
40
50
60
70
80
90

Flock Waypoint Dither

Li
ne

s o
f C

od
e

Proto

Unity

20

Benefits

• Scalable
– Supports large numbers of agents
– Scripts remain constant with dynamic numbers of

agents
• Lightweight

– Small memory and CPU profile
• Realistic movement – agents are affected by their

environment (e.g., collision, gravity, etc.)
• Robust to behavioral changes – both during

programming and during game-play

21

Future Work

• Proto Plug-ins for Unity-specific operators /
controls
– Line-of-sight (including terrain obstacles)
– Operator feedback (e.g., “Agent can’t run at 5 mph

in that direction because it would be up a hill.”)

• Adding to group behavior primitives and agent
scripting library

22

Join the Proto Community

23
http://proto.bbn.com

	Lightweight Simulation Scripting with Proto
	Serious Games
	Game Engines
	Problem
	Spatial-Aggregate Programming
	Solution
			Unity
		Proto
	Approach
	Architecture
	Invoking the Proto Compiler
	A Proto VM Implementation for Unity
	Agent Scripting Library
	Group Behavior Primitives
	Imperative-Style Agent Scripting
	Imperative-Style Agent Scripting
	Agent Scripting Library
	Example: Advance & Flee!
	Example: Deploy
	Code Comparison
	Benefits
	Future Work
	Join the Proto Community

