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Serious Games 

• Training 
– Reduce classroom lecture 
– Promote active learning 

• US Navy VESSEL trainer 
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Game Engines 

• Simplify creating complex, realistic simulations 
• De-couples agent and terrain modeling and 

visualization (e.g., rendering, lighting, geo-
typical terrain) 
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Problem 

• Every game engine has a scripting API 
• APIs allow control of all objects in the game 
• Game Engines are limited in their support for 

quickly and easily scripting behaviors of large 
groups of autonomous agents 

• Multi-Agent System (MAS) toolkits and simulators 
lack realism and features for spatial-aggregate 
programming 

Realism 

Game Engines 

Scalable 
Aggregate 

Control MAS Toolkits 

Spatial Computing 

4 



Spatial-Aggregate 
Programming 

http://www.youtube.com/watch?v=P5vuWJft32g Shibuya Crossing, Tokyo 
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Solution 

• Combine modern game engine with spatial 
approach to scalable multi-agent behavioral 
scripting 

roto 
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  Unity 

• What is Unity? 
• Why Unity? 

– Realistic physics simulator 
– Simple/Realistic terrain modeling 
– Online market for “assets” 

 

7 



 Proto 

• What is Proto? 
• Why Proto? 

– Global-to-local compiler 
– Extensible VM / Simulator Design 
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Approach 

• Proto’s global-to-local compiler & VM 
• Unity’s simulation environment 
• Novel agent scripting library: 

– Group behavior primitives 
– Imperative-style scripting 

roto 
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Architecture 

roto 

Global-to-Local 
Compiler 

Proto Virtual 
Machine for Unity 

 roto Plug-in 

Runtime Execution 
Loop 
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Invoking the Proto Compiler 

Global-to-Local 
Compiler  roto Plug-in 

Start the game 

Send Proto program  
to compiler 

We designed a Unity plug-in for Proto that invokes 
Proto’s compiler, which in-turn creates byte-code 

to be executed by the virtual machine(s). 11 

roto 

Proto byte-code 



A Proto VM Implementation 
for Unity 

Proto Virtual 
Machine for Unity 

 roto Plug-in 

Runtime Execution 
Loop 

We created a Unity plug-in 
that implements the required 

platform-specific functions 
from the Proto virtual 

machine reference 
implementation using tools 

from the Unity API. 
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Agent attributes 

Temporal update, environmental changes 



Agent Scripting Library 

roto 

We created an agent scripting library that extends the 
Proto language with group behavior primitives and 

imperative-style macros. 
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Group Behavior Primitives 

Random Walk Flock / Flock-to Cluster-by 

Toward Disperse / Scatter 14 



Imperative-Style Agent 
Scripting 

• Proto is a pure-functional language based on 
LISP. 

• Doesn’t map well to the typical agent scripting 
user’s imperative approach. 
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Imperative-Style Agent 
Scripting 

• Macro functionality added to Proto 
• Added macros to make Proto read more 

sequentially, event-driven, and/or behaviorally 

(def red-advance (red-team blue-team) 
 (group-case 
  (behavior-of red-team    ;; Red team behavior: 
   (where in-group 
    (flock-to (tup 0 0)))   ;; go to Blue starting location 
  (behavior-of blue-team      ;; Blue team behavior: 
   (on-trigger (can-see red-team)   ;; when Red is near... 
    (scatter (away-from red-team)))  ;; flee from Red! 
  (default (tup 0 0)))))) 
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Agent Scripting Library 

(group-case 
 (behavior-of MEMBERSHIP-TEST BEHAVIOR 
 (behavior-of MEMBERSHIP-TEST BEHAVIOR 
 ... 
 (default BEHAVIOR)...))) 

(where TEST BEHAVIOR) 

(on-trigger TRIGGER BEHAVIOR) 

(priority-list 
 (priority NAME TEST BEHAVIOR 
 (priority NAME TEST BEHAVIOR 
 ...))) 

(sequence 
 ([stage|group-stage] NAME ACTION TERMINATION 
 ([stage|group-stage] NAME ACTION TERMINATION 
 ... 
 [end-sequence|repeat])...)) 

Functional composition  
still applies! 

17 Just a sampler...  More to come! 



Example: Advance & Flee! 

(def red-advance (red-team blue-team) 
 (group-case 
  (behavior-of red-team    ;; Red team behavior: 
   (where in-group 
    (flock-to (tup 0 0)))   ;; go to Blue starting location 
  (behavior-of blue-team      ;; Blue team behavior: 
   (on-trigger (can-see red-team)   ;; when Red is near... 
    (scatter (away-from red-team)))  ;; flee from Red! 
  (default (tup 0 0)))))) 
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Example: Deploy 
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Code Comparison 
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Benefits 

• Scalable 
– Supports large numbers of agents 
– Scripts remain constant with dynamic numbers of 

agents 
• Lightweight 

– Small memory and CPU profile 
• Realistic movement – agents are affected by their 

environment (e.g., collision, gravity, etc.) 
• Robust to behavioral changes – both during 

programming and during game-play 
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Future Work 

• Proto Plug-ins for Unity-specific operators / 
controls 
– Line-of-sight (including terrain obstacles) 
– Operator feedback (e.g., “Agent can’t run at 5 mph 

in that direction because it would be up a hill.”) 

• Adding to group behavior primitives and agent 
scripting library 
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Join the Proto Community 

23 
http://proto.bbn.com 
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