
Developing an Agent Systems Reference Architecture

Duc N. Nguyen1, Robert N. Lass1, Kyle Usbeck1, William M. Mongan1,
Christopher T. Cannon1, William C. Regli1, Israel Mayk2 and Todd Urness2

1 Applied Communications and Information Networking Institute, Drexel University
{dn53, urlass, kfu22, wmm24, ctc82, regli}@cs.drexel.edu

2 Communications-Electronics Research, Development and Engineering Center, US Army

Abstract. One reason for the slow adoption in industry of agent-oriented method-
ologies as a paradigm for developing systems is the lack of integration and general-
purpose technologies. To this end, there is a need to define common patterns, re-
lationships between components, and structural qualities of an agent system. A
reference architecture for agent-based systems would suit this need. This work
describes the methodology for constructing an agent systems reference archi-
tecture by combining reverse software engineering techniques and tools and a
documentation methodology. The goal of the resulting reference architecture is
to identify common patterns and relationships between concepts present in agent
systems to aid in describing and designing new agent systems.

1 Introduction

Using agent-based approaches for constructing large complex distributed systems can
provide advantages over traditional methods. Unfortunately, industry has been slow to
adopt this agent-oriented paradigm. One reason for this slow adoption is the lack of inte-
gration and general-purpose technologies [7]. Standards bodies such as the Foundation
for Intelligent Physical Agents (FIPA)3 are leading efforts to standardize protocols and
formats of an agent-based system. However, there is a need to construct a reference ar-
chitecture that defines the relationships between standardized terms and concepts of an
agent-based system. Furthermore, such an architecture would give a set of architectural
blueprints and best practices to aid in developing new agent frameworks and systems.
To this end, a reference architecture for agent-based systems would speed other stan-
dardization efforts and adoption as a viable systems engineering perspective.

The purpose of the Agent Systems Reference Architecture (ASRA) is to describe
relationships and structural qualities to support the construction of an agent-based sys-
tem. The ASRA is created from multiple cross-cutting levels: the framework level, the
system behavior level, and agent systems in the context of larger external systems. Con-
structing such an architecture for general systems is impossible given the various kinds
of agent systems. One approach for building a reference architecture would be to an-
alyze the tools used to build agent systems to determine the interactions between the
functional concepts of an agent system.

This paper focuses on the process of developing a reference architecture for agent-
based systems. Our approach is the application of a modified 4+1 View Model [3] to

3 http://www.fipa.org

existing agent framework implementations creating five architectural views. We apply
this process to functional concepts in an agent system to obtain the reference architec-
ture.

We analyzed three existing agent framework implementations: Cougaar, JADE, and
AGLOBE. This methodology is applied to agent frameworks rather than deployed agent
systems because the functional concepts defined in the Agent Systems Reference Model
(ASRM) [5] are already implemented in these frameworks.

The main contribution of this paper is a methodology for creating an agent sys-
tems reference architecture through the application of reverse engineering methodolo-
gies combined with the modified 4+1 View model used for documenting existing agent
frameworks.

The rest of this paper is organized as follows: The next section provides a sum-
mary of related efforts in reference architectures for agent-based systems, and defines
the terms architecture, reference architecture in the context of agent systems and agent
frameworks. Section 3 describes the Agent Systems Reference Model and its basis for
creating the ASRA. Section 4 describes how the 4+1 Model is applied to agent frame-
works. Section 5 demonstrates the application of the process to create a portion of the
ASRA. Finally, we conclude with a roadmap of continuing work for developing a ref-
erence architecture.

2 Background and Related Work

There is no general consensus for the definition of a reference architecture; however,
we describe related standards efforts and reference architectures in this section.

The Foundation for Intelligent Physical Agents There are efforts to describe the
behavior and interaction of agent systems. The FIPA Abstract Architecture Specifica-
tion [2]discusses agent system architecture in an effort to promote interoperability and
reusability. FIPA intends to provide a generic view on agent systems and describe how
specific functionality should interact. This specification states low-level details such as
the mechanisms for how agents perform service look-ups. The ASRA also focuses on
identifying architectural paradigms and patterns in agent frameworks. So the ASRA ac-
knowledges that service look-ups may be implemented in different ways and identifies
the different ways of performing this action.

Reference Architecture for Situated Multiagent Systems Weyns et al. [6] devel-
oped a reference architecture for situated multiagent systems consisting from an agent
and an application environment viewpoints. This architecture was developed through an
interative process of analysis and validation studying different agent-based systems. In
their reference architecture, the authors constructed multiple documents from different
views: the module decomposition, the shared data, and the communicating processes
views.

This reference architecture for situated multiagent systems has a similar result of
constructing multiple documents for each view; however, the approach is different. The
ASRA uses a combination of static and dynamic code analysis of representative agent
framework implementations , whereas the former reference architecture examines sev-
eral multiagent systems implementations.

RCS and RCS Related Work The Real-time Control System, first developed by
Barbera, et al.at the National Institute of Standards and Technology, is a reference ar-
chitecturefor hierarchical intelligent control. The RCS reference architecture provides
for intelligent control what the ASRA provides for agent systems. As stated by the RCS
reference architecture [1]: “the evolution of the RCS concept has been driven by an
effort to include the best properties and capabilities of most, if not all, of the intelligent
control systems currently known in the literature, from subsumption to SOAR, from
blackboards to object-oriented programming.”

The notion of a reference architecture has different meanings based on the view-
points and concerns of the stakeholders. In this work, a reference architecture for agent-
based systems is defined as a set of documents addressing patterns and component re-
lationships of the functional concepts set forth in the ASRM.

3 The Agent Systems Reference Model

The Agent Systems Reference Model (ASRM) [5] is a model for software systems
composed of agents. It establishes terms, concepts and definitions needed for the com-
parison of agent systems. The ASRA is an elaboration of the ASRM since it establishes
relationships between concepts in agent frameworks and defines structural patterns for
those concepts.

The ASRM defines an intelligent agent—or simply agent—as situated computa-
tional processes that embody one or more of the following qualities: autonomy, proac-
tivity, interactivity, continuous, sociality, and/or mobility. The ASRM also formalizes
concepts and layers of organization in an agent-based system. The layers described are:
agents, frameworks, platforms, hosts, and environments. An agent-based system is the
set of frameworks, the agents that execute in them, the platform (other software) that
supports them and the hosts (hardware) upon which they execute.

The functional concepts of an agent system support overall system execution. They
are essential in the definition of the ASRA and are made up of the following: Agent
Administration, Security and Survivability, Mobility, Conflict Management, Messag-
ing, Logging, and Directory Services.

4 Methodology for creating an Agent Systems Reference
Architecture

Our approach to constructing a reference architecture for agent systems is to create
multiple architecture documents by analyzing existing open source agent framework
implementations and applying a rigorous 4+1 view model augmented with reverse en-
gineering data.

Deriving 4+1 Views Using Reverse Engineering The 4+1 View Model [3] creates dif-
ferent architectural descriptions, or views, of software systems for different interested
parties (e.g., system developers, business-persons, customers). Each view identifies and
describes the relationships between components and concepts. Interested parties will

view these relationships with different weights and significance, in some cases they are
meaningless. The Views of the 4+1 model, and their construction for the ASRA, are
described in detail in Section 5.

Our approach in deriving and documenting each architecture is a modified version
of the 4+1 approach. Here, we begin by iterating over the functional concepts of the
ASRM, and developing the Scenario View consisting of use cases. For each use case,
we developed an agent that exercised the scenario, and performed reverse-engineering
runtime analysis to obtain the Process View. This data provides a slice of the program
(and, thus, the framework and other libraries), through which we can focus our static
analysis in the Development View. Finally, this is abstracted into components using
clustering algorithms to form the basis of the Logical View. By contrast to traditional
4+1 approaches, we document the most abstract views first and augment each with
reverse engineering data or domain knowledge to create the next view.

We utilized reverse software engineering tools and performed dynamic and static
analysis [4] to assist with our data mining and move from scenarios and existing imple-
mentations to a reference 4+1 architectural description. In this approach, the data used
to construct a view is used to inform the construction of the next view.

5 Case Study: JADE Mobility

We demonstrate the analysis and application of the modified 4+1 documentation model
for agent mobility within an agent system implemented using the JADE framework.

The Scenario View: The documentation process begins with stating the use cases for
the functional concept defined by the ASRM and further elaborating actors and invoca-
tion points. The intended audience are high-level practitioners who need explanation of
concepts for an agent-based system.

The Process View: To create the Process view, dynamic analysis data is generated for a
system by running a slice of a program representing the scenario. We create a process
diagram to illustrate the process view. Reverse engineered runtime data augments the
process diagram to create a package diagram to provide a conceptual view. For agent
mobility, we generate a runtime trace by running a profiler against code snippets that
demonstrate agent mobility. The runtime trace documents the percentage of time meth-
ods are invoked during the code’s execution. Figure 1(a) displays the temporal view
of a scenario demonstrating the invocation points of the agent mobility functional con-
cept. The resulting process diagram after augmenting with package names is shown in
Figure 1(b). Upon creating similar diagrams for AGLOBE and Cougaar, two patterns
for defining the process of agent mobility emerge: serialization mobility and shared-
object mobility. With serialization mobility as exhibited by JADE and AGLOBE, (1)
the agent’s thread of execution is paused, (2) the agent is converted into a transfer-
able form, (3) the is transfered to the target platform, (4) the agent is converted back
into an executable form, and (5) the agent resumes (or begins) thread of execution.
With shared-object mobility (as is the case with Cougaar) mobile agents are shared
between platform containers. The agent’s state includes current platform location and

5.4% WhereaboutsAgent$2.action(...) (5.00 s)
0.0% jade.domain.FIPAAgentManagement.SearchConstraints.<init>(...) (0.00 ns)
0.0% java.lang.Long.<init>(...) (0.00 ns)
0.0% jade.domain.FIPAAgentManagement.SearchConstraints.setMaxResults(...) (0.00 ns)
0.0% jade.domain.FIPAAgentManagement.AMSAgentDescription.<init>(...) (0.00 ns)
3.3% jade.domain.AMSService.search(...) (3.00 s)
2.1% WhereaboutsAgent.moveMyself(...) (2.00 s)

0.0% jade.core.Agent.getAMS(...) (10.00 ms)
0.0% jade.domain.JADEAgentManagement.QueryPlatformLocationsAction.<init>(...) (0.00 ns)
0.0% jade.content.onto.basic.Action.<init>(...) (0.00 ns)
0.5% WhereaboutsAgent.sendRequest(...) (540.00 ms)
0.0% jade.core.Agent.getAMS(...) (0.00 ns)
0.0% jade.lang.acl.MessageTemplate.MatchSender(...) (0.00 ns)
0.0% jade.lang.acl.MessageTemplate.MatchPerformative(...) (0.00 ns)
0.0% jade.lang.acl.MessageTemplate.and(...) (0.00 ns)
0.0% jade.core.Agent.blockingReceive(...) (40.00 ms)
0.0% jade.core.Agent.getContentManager(...) (0.00 ns)
1.0% jade.content.ContentManager.extractContent(...) (1.00 s)
0.0% java.lang.ClassLoader.checkPackageAccess(...) (0.00 ns)
0.0% jade.core.Agent.here(...) (0.00 ns)
0.0% jade.domain.mobility.MobileAgentDescription.<init>(...) (0.00 ns)
0.0% jade.domain.mobility.MobileAgentDescription.setName(...) (0.00 ns)
0.0% jade.domain.mobility.MobileAgentDescription.setDestination(...) (0.00 ns)
0.5% jade.core.Agent.doMove(...) (540.00 ms)

0.5% jade.core.Agent.initMobHelper(...) (530.00 ms)
0.4% jade.core.Agent.getHelper(...) (410.00 ms)
0.1% java.lang.ClassLoader.loadClassInternal(...) (120.00 ms)
0.0% jade.core.Agent$1.<init>(...) (0.00 ns)
0.0% jade.core.mobility.AgentMobilityService$AgentMobilityHelperImpl.registerMovable(...) (0.00 ns)

0.0% jade.core.mobility.AgentMobilityService$AgentMobilityHelperImpl.move(...) (10.00 ms)
0.0% jade.core.mobility.AgentMobilityService$TransitLifeCycle.<init>(...) (0.00 ns)

0.0% jade.core.mobility.AgentMobilityService$TransitLifeCycle.<init>(...) (0.00 ns)
0.0% jade.core.LifeCycle.<init>(...) (0.00 ns)
0.0% jade.core.mobility.AgentMobilityService.getName(...) (0.00 ns)
0.0% jade.util.Logger.getMyLogger(...) (0.00 ns)

0.0% jade.core.Agent.changeStateTo(...) (10.00 ms)
0.0% jade.core.LifeCycle.setAgent(...) (0.00 ns)
0.0% jade.core.LifeCycle.equals(...) (0.00 ns)
0.0% jade.core.Agent$ActiveLifeCycle.transitionTo(...) (0.00 ns)
0.0% jade.core.Agent.notifyChangedAgentState(...) (10.00 ms)

(a) Runtime Trace.

Jade Mobility

jade.core.Agent.getAMS

jade.core.Agent.doMove

jade.core.mobility.AgentMobilityService.TransitLifeCycle

jade.core.Agent.ActiveLifeCycle.transitionTo

jade.core.Agent.notifyChangedAgentState

(b) Process View Diagram

Fig. 1. Jade Mobility runtime trace and resulting Process view diagram.

upon “transmission”, the agent’s shared object state is modified to indicate the agent’s
new platform location.

The Development View: The development view is the static view of the agent system de-
rived through the use of static code analysis tools and temporal data from the previously
created process view. Static analysis tools produce a graph of all the software compo-
nents. This data is analyzed and informed by the runtime analysis (to focus the search
of a large static analysis data set) obtained during the construction of the Process View
to create the Development View. This view provides a sense of the topology of the agent
system software, including the logical components responsible for performing tasks and
design patterns representing the connections between them. The resulting agent mobil-
ity functional concept is described using the data obtained in the serial approach, and
consists of: Destination Platform Discovery, in which Directory Services are used to
locate the addressing information of the destination platform, Agent Encapsulation,
in which the mobile agent is serialized into a message from the Messaging functional
concept, Message Communication, in which the agent is delivered to its destination
via the messaging component, and Agent Extraction, in which the agent is extracted
at the destination platform from its serialized state.

The Logical View: The logical view is constructed by observing the clustered runtime
data generated from our reverse engineering tools, and organizing the major objects
into packages. Although the process and logical views concern themselves with con-
crete system details in an architecture, they are also helpful to express the high level
packages and interacting components existing in an agent system. For agent mobility,
the abstracted logical view illustrates that even though agent mobility can be imple-
mented using the functional concepts for directory services and messaging, there is the
additional requirement to identify the messages as encapsulated serialized agents.

The Physical View: The physical view is normally reserved by the 4+1 model for non-
functional requirements of a system, including deployment and administration concerns
and is developed independently of the serial approach that generated the scenario, pro-
cess, development, and logical views because it deals with more of the physical aspects
of the framework and the agent system.. Although the ASRA addresses some of these
concerns, the physical view section primarily concerns itself with the physical aspects
and design decisions in deploying an agent system in a given environment. Otherwise
this functional concept is not abstractable, so it is omitted here.

6 Conclusion and Future Work

This paper described our approach for creating a reference architecture for agent sys-
tems and frameworks using the 4+1 View Model. We demonstrated this application
on the Agent Mobility functional concept in each view. This approach satisfies prac-
titioners at multiple levels: high-level, system designer, system architect, developer,
system deployer. The ASRA provides architectural design paradigms for agent frame-
work functional concepts defined by the ASRM. These serve as architectural blueprints
for constructing new agent frameworks, or identifying the functional components re-
quired to construct new systems using existing frameworks. Further documentation of
the functional concepts and their interactions at each view is in progress and a complete
document is forthcoming. Further work also includes creating reference architectures
focusing on the paradigms of agents and external systems outside the traditional agent-
based system construct (for example, agents integrated with web services) and on agent
societies and communities.

References

1. James Albus and G. Rippey. RCS: a reference model architecture for intelligent control. In
Proceedings of the From Perception to Action Conference, pages 218—229, September 1994.

2. Foundation for Intelligent Physical Agents. Abstract architecture, December 2002. http:

//www.fipa.org/specs/fipa00001/.
3. P. Kruchten. Architectural blueprints—The “4+1” view model of software architecture. IEEE

Software, 12(6):42–50, November 1995.
4. W. M. Mongan, C. J. Dugan, R. N. Lass, A. K. Hight, J. Salvage, W. C. Regli, and P. J. Modi.

Dynamic analysis of agent frameworks in support of a multiagent systems reference model.
IADIS International Conference Intelligent Systems and Agents, 2007.

5. W. C. Regli, I. Mayk, C. J. Dugan, J. B. Kopena, R. N. Lass, P. J. Modi, W. M. Mongan, J. K.
Salvage, and E. A. Sultanik. Development and specification of a reference model for agent-
based systems. IEEE Trans. On Systems, Man, and Cybernetics, Part C, 39(5):572–596, Sep.
2009.

6. D. Weyns and T. Holvoet. A reference architecture for situated multiagent systems. Lecture
Notes in Computer Science, 4389:1, 2007.

7. D. Weyns, H. V. D. Parunak, and O. Shehory. The future of software engineering and multi-
agent systems. Special issue on Future of Software Engineering and Multi-Agent Systems,
International Journal of Agent-Oriented Software Engineering (IJAOSE), 2008.

