
Self-Stabilizing Robot Team Formation With Proto
IEEE Self-Adaptive and Self-Organizing Systems 2012 Demo Entry

Jacob Beal
Raytheon BBN Technologies
Cambridge, MA, USA, 02138
Email: jakebeal@bbn.com

Jeffrey Cleveland
Raytheon BBN Technologies
Cambridge, MA, USA, 02138

Email: jcleveland@bbn.com

Kyle Usbeck
Raytheon BBN Technologies
Cambridge, MA, USA, 02138
Email: kusbeck@bbn.com

I. INTRODUCTION

We have used the Proto spatial computing language to create
teaming algorithms based on random chain formation. Our
algorithms are self-stabilizing, scale easily from less than ten
robots to thousands of robots, and are highly robust against
dynamic changes in perception and communication, arena
size, teaming goals, adding and removing robots, and even
mobility dimension. In this paper, we describe our approach,
give details on our algorithms and their self-* properties, and
present simulations validating the algorithms.

The self-organization of robots into teams may be viewed as
a spatial computing problem. Spatial computers, as generally
defined by the spatial computing research community,1 are:

... collections of local computational devices dis-
tributed through a physical space, in which: the
difficulty of moving information between any two
devices is strongly dependent on the distance be-
tween them, and the “functional goals” of the system
are generally defined in terms of the system’s spatial
structure.

In this demonstration we have a collection of robots distributed
through geometric space in an “arena.” The robots can only
perceive and communicate over a strictly limited range (dis-
tance dependent information movement) and the goal is to
organize the robots into physically separated teams (goals
related to spatial structure).

We have thus chosen to build our solution using Proto [1],
[2], a spatial computing language that makes it much easier
to build self-* distributed algorithms for problems like robot
team formation. With Proto, we can program our algorithm
not in terms of individual robots, but in terms of aggregates
of robots, by viewing the robots as a discrete approximation
of the space they occupy. The Proto compiler then transforms
the aggregate program into a local program that runs on the
individual robots.

II. TEAMING ALGORITHM: RANDOM CHAIN FORMATION

Our teaming algorithms are based on random formation of
chains. Every robot is either a head or a follower in some
chain.

1Source: http://scw12.spatial-computing.org, website for
the 5th Spatial Computing Workshop.

• By default, every robot is the head of a chain, using its
own arbitrary unique ID as the ID for that chain and
assigning itself an index of 1.

• Heads wander randomly, looking for other chains. If a
head encounters a chain with a lower ID, it will follow
it backwards towards its tail (the robot with the highest
index).

• Tails try to recruit robots from higher ID chains. Re-
cruited robots taken a index one higher than the tail, so
a chain of k robots each have a different index in order
from head to tail of 1 to k.

• All the robots in the chain try to stay close to the robot
in front of them and farther from all other nearby robots.

The chain formation algorithm is made self-stabilizing by
having all of the links of the chain actively maintained. This
mean that if the chain is ever broken, then either it will be
rapidly repaired or else the disconnected robots will form their
own chain(s). By modifying the conditions in which a robot
will allow itself to be recruited by a tail, various team forming
behaviors emerge.

Teams of n Robots: In order to form teams of size n each
robot allows itself to be recruited if its position in the recruiting
chain will ≤ n.

n Teams of Robots: Creating precisely n size-balanced
teams of robots is more difficult, because it is impossible to
know how big a team should be (and hence whether a robot
should be recruited to it or not) without creating a global
estimate of the total number of robots or current number of
groups.

There is thus a fundamental tradeoff that much be made,
between the precision of size balancing and the degree to
which robots are allowed to move independently of one
another. In one example a single chain of robots is created
by specifying that each robot will always allow itself to be
recruited. Within that chain each robot assigns itself a team id
based on its position in the chain, and how many teams are
desired. In the second example, each robot randomly assigns
itself a team id between 1 and n. This probabilistic approach,
while not as precise as the single chain algorithm, enables the
free movement of individual teams.

III. SELF-* PROPERTIES

Many of the self-* properties of our algorithm stem from
the root assumption that the robots are scattered through an



(a) Tightly Packed (b) Large Numbers (c) Long Comm.

(d) Short Comm. (e) 3-Dimensional (f) Change of Goal

Fig. 1. Algorithm scalability and resilience in changing conditions.

arena of unknown size, with neither global coordinates nor
high accuracy movement. This means that (in general) the
robots can never safely assume that they have found all of
the other robots that are attempting to team with them: a new
set of robots with different IDs may appear at any moment,
and it is simply that the probability of such encounters drops
over time.

An algorithm that can handle this for an arbitrary number
of robots is necessarily able to handle many types of self-
* challenges as well. Supporting this at a lower level, Proto
provides a foundation of an implicitly self-stabilizing view of
neighbors’ values, self-stabilizing manifold operations (e.g.,
broadcast), and a domain restriction semantics that ensures
clean reinitialization of state in program mode changes. The
only other thing we had left to ensure was that the algorithm
actively maintained team structure, so that when robots were
removed, goals changed, or state was otherwise rendered
invalid, the problem could be detected immediately and the
incorrect/obsolete state discarded, leaving the teams to rebuild
to their new converged state.

With regards to particular self-* properties of interest, this
means:

Robustness to perception and communication range: We
treat robots as neighbors only when they can both communi-
cate and perceive one another, effectively restricting whichever
range is larger to match the smaller. That done, larger ranges
simply make it easier for robots to rendezvous with one
another, assuming that there is enough bandwidth for them
to transmit regularly.

Arena size and complexity scalability: Because robots
move randomly, they will eventually rendezvous with one
another in an arena of arbitrary size, though the rendezvous
time is expected to scale as Ω(d2) where d is the diameter
of the arena. Non-square arenas and obstacles will not change
this significantly so long as the shape is simple.

Number of robots scalability: The only limit on the num-
ber of robots is how densely they are packed into the arena: the
convergence slows down drastically when robots are packed
tightly enough that they have a hard time moving without

getting closer than to other robots than their algorithmic limits.
We have successfully run the algorithms in simulation with
few as two robots 2 and as many as 5000 robots.

Team size/number scalability: Chains, by their nature, can
be arbitrarily short or long. Thus, changing the number of
teams or the number of robots per team has little effect on
the ability of the algorithms to operate correctly. The only
limiting factor is that as chains become very large, the random
wandering of the head gives more opportunities for a chain to
become entangled with itself, which may sometimes result in
a team becoming disconnected and having to reconverge.

Scaling from 2D to 3D: Our algorithms are written
entirely in terms of vector mathematics, so there is simply
no difference between computing with 2D and 3D vectors.
The algorithm could scale to higher dimensions as well, were
that desired.

Resilience to team specification change: When the spec-
ified goal changes between n teams vs. teams of n and/or the
value of n changes, then the robots either find themselves
in a state where some chain linkages are no longer valid,
or else where existing chains must further coalesce. In the
first case, since linkages are actively maintained, the obsolete
linkages immediately dissolve, leaving robots to reconverge
from their newly broken up smaller chains. The second case
is no different than if the goal had always been to have larger
chains but the robots had not yet managed to converge.

Resilience to perception and communication change:
If perception and/or communication shorten faster than the
robots can bunch up to compensate, then they may become
disconnected and have to reconverge. Otherwise, short ranges
simply result in robots moving proportionally slower and
closer together to maintain their conncetions. Lengthening
ranges have no effect as long as there is enough bandwidth
for the robots to transmit regularly.

Resilience to adding robots: Adding robots is no different
that encountering robots that had not perviously wandered to
a point where they could rendezvous, and thus results in rapid
reconvergence.

Resilience to removing robots: Removing robots will
often break chains; when this happens, it is no different than a
chain being broken due to other reasons (e.g., obstacle avoid-
ance, self-entanglement). Because links are actively main-
tained, the disconnected portions will rapidly either reconnect
or else form their own chains and reconverge.

IV. ALGORITHM DEMONSTRATION IN SIMULATION

We have made a video and all of our simulation code
and instructions on executing our work available online at
http://proto.bbn.com/saso2012

REFERENCES

[1] J. Beal and J. Bachrach, “Infrastructure for engineered emergence in
sensor/actuator networks,” IEEE Intelligent Systems, vol. 21, pp. 10–19,
March/April 2006.

[2] “MIT Proto,” software available at http://proto.bbn.com/, Re-
trieved June 22nd, 2012.

2The one robot case is trivial.


