
Network-Centric Automated Planning and Execution

A Thesis

Submitted to the Faculty

of

Drexel University

by

Kyle Usbeck

in partial fulfillment of the

requirements for the degree

of

Master of Science in Computer Science

2009

c© Copyright 2009
Kyle Usbeck. All Rights Reserved.

ii

Dedications

This thesis is dedicated to my parents, Frederick and Linda Usbeck. Without their loving

support, this work would not have been possible.

iii

Acknowledgements

First, I would like to thank my advisor and mentor, Dr. William C. Regli, for truly starting

my interest in Computer Science and patiently teaching me at every step of my academic

life. I also thank my committee, Dr. Rachel Greenstadt and Dr. Ani Hsieh, for their insight

and advice.

Next, I would like to thank the faculty of Drexel University for my strong foundation in

computer science. Also, I give thanks to Prof. Austin Tate, Dr. Gerhard Wickler, and Jef-

fery Dalton from the University of Edinburgh for providing the intelligent agent framework

I use in my implementations and feedback at the beginning of this project.

Also, many people have reviewed portions of this work and offered helpful advice.

These people include Ilya Braude, Matthew Chase, Patrick Freestone, Joseph Kopena,

Duc Nguyen, Robert Lass, Evan Sultanik and Mary Wertz. I would like to thank them

as well as my family and friends for their support during the creation of this thesis.

Finally, I thank the authors of TEX, LATEX, BIBTEX, Vim, and Gnuplot. Without these

and other Open-Source software, the presentation quality of this thesis would have suf-

fered.

iv

Table of Contents

List of Tables . viii

List of Figures . ix

Abstract . xi

1. Introduction . 1

1.1 Motivation . 2

1.2 Approach . 5

1.3 Organization . 6

2. Background . 8

2.1 Planning Notation . 8

2.2 Introduction to Planning . 8

2.2.1 Role of Agents in Planning . 9

2.2.2 Classical Planning . 10

2.2.3 Solving the Planning Problem. 15

2.2.4 Hierarchical Task Network Planning . 16

2.2.5 Scheduling . 17

2.3 Planners: Examples and Architectures . 18

2.3.1 I-X/I-Plan . 20

2.4 Plan Optimization . 20

2.4.1 Plan Metrics . 21

2.4.2 Preference-based Planning . 22

2.4.3 Dominant Plans . 23

2.5 Planning Under Uncertainty . 24

2.5.1 Uncertainty in the IED detection scenario . 25

2.5.2 Decision-Theoretic Planning . 25

2.5.3 Probabilistic Planning . 26

v

2.5.4 Interleaving Planning and Execution: Contingency Planning 27

2.5.5 Reactive Planning . 28

2.6 Plan Execution and Monitoring . 29

2.6.1 Analytical Approach . 30

2.6.2 Data-driven Approach . 32

2.6.3 Knowledge-based Approach . 33

2.7 Qualitatively Different Plans . 34

2.7.1 Domain-independent . 34

2.7.2 Domain-dependent. 35

2.8 Measuring Planners . 35

2.8.1 Goals-Question-Metric . 36

2.9 Network-Centric Systems and Network-Awareness . 36

2.10 Scenario Background . 38

2.11 Related Work . 38

3. Formalization . 40

3.1 Formal Problem Statement . 41

3.2 Hypothesis . 44

3.3 Motivating Scenario . 45

4. Technical Approach . 49

4.1 Planning Agents . 49

4.1.1 Domain-independent Planning Agent . 50

4.1.2 Random Planning Agent . 50

4.1.3 Plan Evaluation Guided Planning Agent . 51

4.1.4 Measuring Planners . 51

4.2 Execution Agents. 53

4.2.1 Naı̈ve Execution Agent . 53

vi

4.2.2 Reactive Execution Agent . 53

4.2.3 Proactive Execution Agent . 55

4.2.4 Measuring Execution Agents. 56

4.3 Monitoring Agents . 57

4.3.1 Analytical Monitoring Agent. 57

4.3.2 Data-driven Monitoring Agent . 58

4.3.3 Knowledge-based Monitoring Agent . 58

4.3.4 Measuring Monitoring Agents . 59

4.4 Network-Aware Agents . 59

4.4.1 Network-Aware Planning Agents . 60

4.4.2 Network-Aware Execution Agents . 62

4.4.3 Network-Aware Monitoring Agents . 63

4.5 Network-Centric Extensions to the Planning Problem . 64

4.5.1 Plan Evaluation Criteria Statistics . 68

4.5.2 Plan Evaluation Visualization . 69

5. Experiments . 71

5.1 Plan Evaluation Benchmarking . 71

5.2 Network-Aware Agent Combinations . 78

5.2.1 Experiment Setup . 78

5.2.2 Planning Agent Comparisons . 82

5.2.3 Execution Agent Comparisons . 88

5.2.4 Monitoring Agent Comparisons . 91

5.3 Experimental Analysis . 93

6. Conclusions . 98

6.1 Network-Centric Planning Problem Extensions . 98

6.2 Network-Aware Plan Evaluators . 99

vii

6.3 Qualitatively Different Plans . 99

6.4 Network-Aware Agents . 99

6.4.1 Network-Aware Planning Agent . 100

6.4.2 Network-Aware Execution Agents . 100

6.4.3 Network-Aware Monitoring Agents . 101

6.5 Future Work . 101

Bibliography . 102

Appendices . 108

Appendix A. IED Detection Scenario Domain . 108

viii

List of Tables

4.1 Description of the Naı̈ve Execution Agent policies using the formalization de-

scribed in Section 3.1.. 53

4.2 Description of the Reactive Execution Agent policies using the formalization

described in Section 3.1. 55

4.3 Description of the Proactive Execution Agent policies using the formalization

described in Section 3.1. 55

5.1 Actions provided by the hosts in the plan evaluation benchmarking experiment. 72

5.2 Camera properties as resources in the plan evaluation benchmarking experiment. 72

5.3 Network node properties as resources in the plan evaluation benchmarking ex-

periment. 72

5.4 Standard deviations of plan evaluations for each search strategy show that

my Guided search strategy yields the most qualitatively-different plans in the

“Search Guidance Using Plan Evaluation Criteria” experiment. 77

5.5 The percentage of dominant plans produced by each search strategy in the

“Dominant Plans” experiment. 77

ix

List of Figures

1.1 Example of a heterogeneous network. 2

1.2 The IED detection scenario. 4

2.1 The interactions between agents in a planning architecture. 10

2.2 The agents involved in the scheduling process. 18

2.3 Temporal constraints on plan actions as visualized by the “Domain Editor” of
I-X. 19

2.4 The main components of the analytical approach towards fault detection. 31

3.1 The conceptual diagram of the formal problem statement. 42

3.2 The data flow and role of agents in the formal problem statement. 43

3.3 The sequence diagram for the plan execution process. 44

3.4 Conceptual diagram of the IED detection scenario. 47

4.1 Flow chart of the reactive execution agent. 54

4.2 Flow chart of the proactive execution agent. 56

4.3 Sequence diagram showing the interaction between the execution agent and
analytic monitoring agent(s). 64

4.4 Flow diagram showing the interaction between the execution agent and data-
driven monitoring agent(s). 65

4.5 Graph illustrating the network criteria tested during the disconnection model-
ing process for the data-driven monitoring agent. 66

4.6 A screen capture of the modified I-Plan Option Tool displaying plan evaluation
comparisons and statistics. 70

5.1 Geographical map of the topology of locations, resources, and a network overlay. 73

5.2 Network hop evaluation frequency distribution. 74

x

5.3 Network bandwidth evaluation frequency distribution. 75

5.4 IED detection accuracy evaluation frequency distribution. 76

5.5 Execution time evaluation frequency distribution.. 77

5.6 Screenshot of the IED detection scenario running in the network emulator, CORE. 80

5.7 Screenshot of the partition/merge mobility model running in CORE. 81

5.8 Mean plan execution times (in minutes) by plan, execution agent, and monitor-
ing agent types. 86

5.9 IED detection accuracy for each plan. 87

5.10 Mean plan execution time for plans that executed successfully to completion
by planning agent and the network dynamism (as indicated by the mobility
scenario). 89

5.11 Mean IED detection accuracy versus mean plan execution time of the domain-
independent planning agent in combination with each execution agent. 91

5.12 Mean IED detection accuracy versus mean plan execution time of the random
planning agent in combination with each execution agent. 92

5.13 Mean IED detection accuracy versus mean plan execution time of the guided
planning agent in combination with each execution agent. 93

5.14 Average number of packets transmitted across the entire network for various
execution agents under different network dynamics. 94

5.15 Network statistics collected by the data-driven monitoring agent during the dy-
namic link weight mobility scenario.. 95

5.16 Network statistics collected by the data-driven monitoring agent during the par-
tition/merge mobility scenario. 96

xi

Abstract
Network-Centric Automated Planning and Execution

Kyle Usbeck
Advisor: William C. Regli, Ph. D.

Web services provide interoperability to network hosts with different capabilities. Com-

plex tasks can be performed by composing services, assuming sufficient service descrip-

tions are provided. Researchers are just beginning to realize the importance of accounting

for network properties during automated service composition. The work presented in this

thesis considers dynamic, heterogeneous networks — one type of network-centric environ-

ment.

The purpose of this research is to improve network-centric service composition. This

is accomplished by converting the service composition problem to an automated planning

under uncertainty problem and by reasoning about network properties at various stages of

the planning process. This thesis presents a method of improving the agents’ ability to

construct, execute, and monitor plans in network-centric environments.

There are two main contributions of this thesis: 1) generating qualitatively-different

plans and 2) creating network-aware agents. As part of the former contribution, this

thesis presents a comparison of methods used to create classical planning domains for

distributed service composition problems. The other part of this contribution is an al-

gorithm for guiding a plan-space planner to create qualitatively-different plans based on

domain-dependent and network-centric plan evaluations. The second contribution pertains

to network-awareness, which agents exhibit by reacting to changes in network conditions.

This thesis describes methods of incorporating network-awareness into agents that 1) create

plans, 2) execute plans, and 3) monitor plan execution.

Experiments to validate the aforementioned contributions are presented in the context of

xii

an Improvised Explosive Device (IED) detection scenario. Several locations are monitored

for IEDs using a variety of techniques including manual searching and visual change detec-

tion, as well as a variety of resources including humans, robots, and unmanned aerial vehi-

cles (UAVs). Empirical results indicate that incorporating network-awareness into agents in

dynamic, heterogeneous networks improves the overall service composition performance

and effectiveness.

1

1. Introduction

Researchers are just beginning to realize the importance of accounting for network

properties during automated service composition. In heterogeneous networks, such as the

one depicted in Figure 1.1, there are multiple different network technologies — satellite

communication, mobile ad-hoc networks (MANETs), wired Ethernet, etc. — combined to

work together simultaneously [78]. One method for performing automated service com-

position in a heterogeneous network is to convert the services to actions in an automated

planning problem. By using this method, dynamic network properties are represented in

the automated planning world model (domain) and network properties are represented by

plan evaluators. These evaluators are functions that express the desirability of a situation

or action, and represent the concerns of the end user.

This thesis compares classical planning methods for modeling distributed service com-

position. Also, it presents extensions necessary for automated planners to reason about

service composition in dynamic, heterogeneous networks. The extensions include reusable

plan evaluators for network concerns and a novel method of generating qualitatively-different

plans over a range of plan evaluators.

There are three stages in the automated planning process: 1) planning, 2) execution, and

3) monitoring. In the planning stage, plans (sets of actions) are created; during execution,

the actions of a plan are performed; and in the monitoring stage, execution is overseen to

detect errors during action execution. This thesis shows which stage(s) of the automated

planning process benefit most from reasoning about network properties.

2

Internet

MANET

Wired LAN

Satellite

Satellite Reachback

Figure 1.1: Example of a heterogeneous network. In this type of network, multiple differ-
ent technologies (satellite communication, MANET, and wired Ethernet) are combined.

1.1 Motivation

In current warfare, many casualties occur due to concealed landmines and roadside

bombs, called Improvised Explosive Devices (IEDs) [41]. As new techniques of perform-

ing IED detection arise, a methodology for choosing among IED detection techniques to

perform is necessary.

In the motivating scenario, there are several locations that must be monitored for IEDs.

Location monitoring can be accomplished via two different techniques: manual searching

and visual change detection. Also, different actors such as humans, robots, and unmanned

aerial vehicles (UAVs), are capable of performing the IED monitoring techniques.

Since each monitoring technique requires different resources (time, money, humans,

3

robots, UAVs, etc.) and yields different results, no single technique is always appropri-

ate. The quality of each IED detection method and the combinations of methods used to

monitor all of the locations can be quantitatively expressed by a number of evaluators.

For instance, an evaluator exists for the amount of time required to complete the location

monitoring. Another evaluator exists for the monetary transportation costs associated with

moving resources to various locations.

The IED detection scenario is illustrated in Figure 1.2. Red rectangles represent phys-

ical locations that require IED monitoring — an IED has been planted in location 2. Hu-

mans, robots, and UAVs are the entities that are capable of performing IED detection tech-

niques. Cameras represent the geographical positioning of resources required to perform

visual change detection. The goal is to minimize the overall evaluation cost where that cost

can be affected not only by the selected monitoring techniques, but also the entities that

perform the techniques, the order the techniques are performed, and the resources utilized.

The IED detection scenario can be viewed as an instance of a web service composition

problem where the monitoring techniques are high-level services. Hoffmann et al. [33] de-

fines web service composition as the “linking. . . of existing services so that their aggregate

behavior is that of a desired service (the goal).” Each service, when invoked, causes a host

to perform a task, such as manually searching for IEDs at a certain location.

Assuring Quality of Service (QoS) over web service compositions is studied to some

degree by Gu et al. [29], but the authors do not consider varying solution qualities — ser-

vice QoS is not changing during runtime. Furthermore, Gu et al. only consider availability

and response time as QoS metrics, both of which can vary greatly in dynamic networks.

By describing the services using a semantic web service framework, such as OWL-S [77]

or WSMO [58], we can determine sets of monitoring combinations to solve this problem us-

ing automated composition of semantic web services. Sirin et al. [60] and Hoffmann et al.

[33] map the automated composition of semantic web services to an automated planning

4

location 7

location 5

location 3

location 1

location 8

location 6

location 4

location 2

robot 2

UAV 1 UAV 2

robot 1

human 1

human 3

human 2

Figure 1.2: The IED detection scenario. Several locations are monitored for IEDs using
manual searching or visual change detection.

problem. In what OWL-S labels the “service profile” level and WSMO labels the “service

capability” level, web services are described with preconditions and effects, analogous to

those in planning operators. The semantic service descriptions provided by OWL-S and

WSMO make it possible to perform automated composition of services to accomplish an

end user’s goal. This still does not solve the problem completely because of the uncertainty

in action execution — a host may never receive orders to monitor an area due to commu-

nication failures. Also, a current research area is representing the dynamic, heterogeneous

network in the automated planning model.

5

Definition 1. A network-centric system is a distributed system where performance is de-

pendent on the quality of the underlying network communication links.

Studies such as [54] show agents that reason over network properties (labeled network-

aware) in MANET environments can drastically improve system performance over their

network-unaware counterparts. Incorporating network-awareness into the automated plan-

ning problem would provide a way to represent the dynamic, heterogeneous network, how-

ever it is not clear how to accomplish this task or what network properties to model. The

network characteristics that Peysakhov et al. use for network-awareness are signal strength,

signal-to-noise ratio, delay, jitter, and routing. These and other link properties are consid-

ered when defining my network-centric model.

This thesis expands on the work of Sirin et al. [60] and Hoffmann et al. [33] in mapping

the service composition problem to an automated planning problem. Furthermore, I define

a set of plan evaluations for network-centric systems. The thesis draws on ideas from Myers

et al. [46] in defining a new method of qualitatively-different plan generation based on plan

evaluations. Finally, I adapt the ideas from Peysakhov et al. [54] to incorporate network-

awareness into the agents involved in creating plans, executing plans, and monitoring plan

execution.

1.2 Approach

My approach to solving the network-centric service composition problem is to repre-

sent it as an automated planning problem. To conduct automated planning and execution in

network-centric environments, I first formalize a distributed, agent-based service compo-

sition problem. This formalization includes methods of distributing services in automated

planning domains and my approach to guiding the search strategy of a plan-space auto-

mated planner. Next, I explain methods of reasoning over network properties in planning,

plan execution, and execution monitoring agents. Finally, empirical results are collected to

6

compare the effects of agent implementations that reason about network properties during

different stages of execution.

The contributions of this thesis are as follows:

1. A comparison of methods for creating classical planning domains for distributed

service composition problems;

2. Reusable network-centric plan evaluators for planning agents operating in dynamic,

heterogeneous networks;

3. Modifications for a plan-space automated planner to generate qualitatively-different

plans over a range of plan evaluation criteria; and

4. A comparison of the efficiency and performance of network-aware planning, execu-

tion, and monitoring agents.

The purpose of this research is to improve the ability of agents to construct and execute

plans in network-centric environments. In doing so, I will explain how to reason over and

react to uncertainty at different stages of the planning and plan execution process.

1.3 Organization

The thesis is organized as follows:

• Chapter 2 provides background on research in areas related to the concepts of this

thesis;

• Chapter 3 formalizes my problem statement;

• Chapter 4 describes my approach towards improving plan construction, execution,

and monitoring agents;

• Chapter 5 describes experimental results, evaluating the modified planning algorithm

and comparing each agent’s performance and effectiveness in different network en-

vironments; and

7

• Chapter 6 presents conclusions and plans for future work.

8

2. Background

2.1 Planning Notation

The following notation will be used throughout the thesis. In Section 3.1, the notation

is extended.
P is the planning problem,

Σ is the planning domain,

s0 is the initial state, and

Sg is the set of goal states.

S is the set of states in Σ;

A is the set of actions, {a0, a1, . . . , a|A|} in Σ, where each a =

(precond(a), effects−(a), effects+(a));

E is the set of system events in Σ;

γ is the state transition function;

precond(a) returns the preconditions of action, a;

effects+(a) returns the positive effects of action, a;

effects−(a) returns the negative effects of action, a;

2.2 Introduction to Planning

Planning is the explicit deliberation process that chooses and organizes actions by an-

ticipating their outcomes.

Several factors influence the motivation for planning:

• complexity of tasks or objectives;

• joint activities with other agents; and

• risk or cost associated with tasks or objectives.

9

Planning is useful in complex situations because the interactions of actions and re-

sources may be too complicated to find an efficient solution otherwise. One such compli-

cation, agent coordination, arises very often. For example, if Bill and Sue want cereal for

tomorrow’s breakfast, they might plan which person is responsible for which items. Be-

cause the grocery store is close to Sue’s workplace, she picks up milk and cereal on her

way home from work. Bill, then, is responsible for making sure there are clean bowls and

spoons after dinner tonight.

Also, risk and cost can often be avoided by planning. For instance, when driving cross-

country, planning a route can help avoid a wrong turn or a less-than-optimal road (which

cost time and money in the form of fuel).

However, since planning is a “very complicated, time-consuming, and costly processes”

it is useful to perform a cost/benefit analysis to determine its value [49].

In studying artificial intelligence, planning is the computational study of the general

deliberation process. The remainder of this section will discuss the actors in the planning

process and formalize automated planning. Furthermore, this section discusses how the

planning problem can be extended to include uncertainty in the planning and execution

process.

2.2.1 Role of Agents in Planning

Tate [68] discusses the roles of agents in the planning process. Tate defines three key

agent roles: Task Assignment, Planning, and Execution. In this notion, the planning agent

is responsible for solving a static planning problem and passing the plan to the execution

agent. The execution agent interacts with the real system, and in some situations, can

react to some action execution failures. The task assignment agent communicates with the

planning and execution agents to trigger plan creation and execution respectively.

The agent interactions in [68] form a control theoretic feedback loop. A feedback loop

10

contains a controller which initially accepts a plan and then gives input to some system,

or plant. A sensor component determines the current state of the system to help guide the

controller in the remaining execution steps. In this terminology the controller functions as

the task assignment and execution agent — it should be noted that these operations can

be separated. Figure 2.1 combines Tate’s agent roles with the feedback loop of agents in

planning systems.

Planner

Controller

Goal(s)

Model
(Domain)

Current
State

Plans

System

Actions

Events

Sensor

Observations

Feedback

Figure 2.1: The interactions between agents in a planning architecture.

2.2.2 Classical Planning

Classical Planning the generic term for planning using restricted state transition sys-

tems. In this section, I formalize classical planning and introduce several representations.

11

Classical Planning models the planning domain, Σ, as a state transition system such

that Σ = (S,A,E, γ) where S is the set of states, A is the set of actions, E is the set of

events, and γ = S × (A ∪ E)→ 2S .

The planning problem, P , can in turn be expressed as the triple (Σ, s0, Sg) where s0 is

the initial state and Sg is a set of goal states.

According to [49], there are three ways to represent classical planning:

• Set-theoretic Representation,

• Classical Representation, and

• State-variable Representation.

The differences between these representations come in how they choose to model sym-

bols and operators in the domain. These representations are described in the next sections.

Set-theoretic Representation

The set-theoretic representation models symbols as propositions. For example a state

where a person is at location might look like the following:

{ atLoc1 }

Operators are therefore represented in propositional logic written action a = (precond(a),

effects−(a), effects+(a)) where precond defines a set of propositions that must be true for

the action to be applied, effects− lists the propositions that become false after an action

is applied, and effects+ lists the propositions that become true after an action is applied.

Thus, an action to move the person would then look like:

move = ({ atLoc1 }, { atLoc1 }, { atLoc2 })

12

Classical Representation

In contrast, classical representation uses a derivative of first-order logic and planning

operators to model the problem. A state is represented as a list of first-order atoms, for

example:

at(person1, location1)

A planning operator is described by a name, preconditions, and effects. In this representa-

tion, preconditions and effects are sets of literals.

move(p, l1, l2)

;; moves a person, p, from location, l1, to location, l2

precond: at(p, l1), adjacent(l1, l2)

effects: at(p, l2)

State-variable Representation

An expressively equivalent representation to classical, the state-variable representation

uses functions, rather than relations. In this modeling scheme, a state might look as follows:

{ loc(p) = l1 }

An action, then is modeled as follows:

move(p, l1, l2)

;; moves a person, p, from location, l1, to location, l2

precond: at(p) = l1, adjacent(l1, l2)

effects: at(p) = l2

13

PDDL

The planning domain and problem can be represented in a number of different ways,

one of the most common being the Planning Domain Definition Language (PDDL) [25].

PDDL was originally created as a standard for international planning competitions.

PDDL allows for pluggable extentions which enhance the expressivity of the language.

Examples include extensions for conditional operators, HTN actions, and temporal plan-

ning. The base PDDL specification allows expression of object types, predicates, and ac-

tions.

Assumptions

The conceptual model and representations discussed make certain restrictive assump-

tions. These assumptions are meant to reduce the complexity of the planning problem. The

restrictive model is the name given to the model that makes all of the assumptions discussed

in the rest of this section.

Finite Domain. There are a finite number of states in Σ. This assumption ensures that

the state transition graph is finite. If S is finite or the members of S can be enumerated by

some algorithm (S is recursively enumerable), then states can be represented in first-order

predicate logic, and planning is decidable. Relaxing this assumption allows for new objects

to be created during the plan and continuous datasets (e.g. R) to be considered.

Fully Observable Domain. The planner has complete knowledge of the domain and

the controller’s observability function, η, is the identity function. Sometimes, based on

the domain, making this restrictive assumption is impossible. Relaxing the assumption is

useful when not every aspect of the domain can be known by every agent.

14

Deterministic Domain. γ specifies that each action ∈ A changes the state transition

system to a single state. Formally, ∀s ∈ S, u ∈ A ∪ E : |γ(s, u)| ≤ 1. Relaxing this

assumption allows for reasoning over non-deterministic actions.

Static Domain. This assumption states that E = ∅. In many systems, however, external

events are unavoidable. These events cannot be controlled, but may need to be considered

when planning in some domains. For example, the weather can restrict applicable actions,

but cannot be voluntarily changed.

Restricted Goals. This assumption states that goals are restricted to a set of states such

that if the system enters one of these states, it has reached its goal. Relaxing this assumption

allows the planner to handle constraints on states, plans, and cost/utility.

Sequential Plans. A solution plan is a linearly ordered, finite sequence of actions. This

restriction simplifies the data structure for describing plans. By relaxing this assumption,

certain (more complex) plan structures can be better described. Relaxing this assumption

allows for concurrent action execution.

Implicit Time. Actions and events have no duration in the state transition system. In

other words, state transitions are instantaneous and there is no explicit temporal represen-

tation. Relaxing this assumption allows reasoning about action duration and concurrency

at the cost of increased planning complexity.

Offline Planning. The planner is not concerned with changes in Σ while it is constructing

a plan. This assumption limits the applicability of the plan, since, if the domain changes

while the planner is constructing a plan, the plan may no longer be valid. In domains where

planning occurs as an online activity, this restriction can be relaxed.

15

Relaxing Assumptions

The restrictive assumptions are made to reduce the complexity of the planning problem.

The restrictive model, however, does not account for many of the real-world problems that

might occur. For instance, it is impossible to represent any action with non-deterministic

effects.

Relaxing the assumptions in the restrictive model allows for more realistic domain mod-

eling. The caveat is that the realism in the modeling comes at the cost of computational

complexity. Planning under uncertainty is a branch of planning research that relaxes these

assumptions, particularly determinism, full observability, and reachability goals. See Sec-

tion 2.5 for more information.

2.2.3 Solving the Planning Problem

There are two classical methods for solving the planning problem: state-space and plan-

space. The method of exploring the search space is one important factor in the performance

and result of the planner [49].

Starting at state s0, a state-space planner uses γ to add new states to the current list of

states. Similarly, a state-space planner can start at a goal state sg ∈ Sg and work backward.

Plan-space planning takes a different approach, exploring search space of partial plans.

[49] defines partial plans as a subset of actions that keep some “useful part of this struc-

ture.” This is different from state-space planning in that state-space partial plans are se-

quentially, totally ordered. To eliminate these constraints, a plan-space planner maintains

lists of ordering constraints, causal links (why an action was applied), and variable binding

constraints (what values a variable can/cannot take).

The differences between plan-space and state-space algorithms yield some interesting

properties. Plan-space planning, unlike state-space planning, is infinite with a finite num-

ber of states. Also, plan-space planners do not necessarily produce intermediate states, and

16

the refinement operations for plan-space planners take significantly longer to compute than

state transitions. There are, however, a considerable number of benefits to plan-space plan-

ners over state-space. For example, the plans produced by plan-space planners are more

flexible for execution. Also, plan-space planners provide a simple approach to handling

classical extensions such as time, resource, and information gathering actions. Further-

more, distributed planning and multiagent planning can be addressed very naturally with

plan-space partial plan structures.

Neoclassical planning (or disjunctive-refinement approaches to planning) arose as a

way to more efficiently solve large planning problems. This approach to planning relies

on solutions to similarly difficult problems to simplify or solve the planning problem. One

technique, labeled planning-graph, uses graph node reachability to solve the planning prob-

lem. Others convert the planning problem into propositional satisfiability (SAT) and con-

straint satisfaction problems (CSP) — using research from these respective fields to solve

the problems.

The general search algorithm according to [49] involves four steps: refinement, branch-

ing, pruning, and select. If these operations organize and guide the search well, the per-

formance and efficiency of the planner can be drastically increased. To do this, heuristic

techniques are used to guide the search. Domain-independent heuristics can be used with

any planning domain, whereas domain-dependent (or domain-specific) are “tailor-made”

for a particular domain. The extra effort required to create domain-dependent heuristics

is justified by the use of domain-specific heuristics, or even domain-specific algorithms in

most real-world planners according to [49].

2.2.4 Hierarchical Task Network Planning

Hierarchical Task Network (HTN) planning differs from classical planning in that clas-

sical planning’s objective is to achieve a set of goals whereas HTN planning’s objective is

17

to perform a set of tasks. Furthermore, tasks can be compositions of subtasks, subtasks

can be composed of smaller subtasks, and so on until primitive tasks are reached and the

planning operators can be performed directly.

Several real-world examples of domain-independent HTN planning systems are:

• Nonlin [67], one of the first HTN planning systems;

• SIPE-2 [74], used in many application domains;

• UMCP [16], the first provably sound and complete HTN planning algorithm;

• SHOP2 [48], developed at University of Maryland, this planner serves an active base

of users in government, industry, and academia;

• O-Plan [11, 65], a planner developed throughout the 1980s and 1990s used on many

applications, and still available for download and as a web-based planning service;

and

• I-Plan, based on O-Plan and described in Section 2.3.1.

2.2.5 Scheduling

Although scheduling is discussed in the same context as planning, the processes have

different goals. One can think of planning as the process of selecting and ordering actions

from a domain, whereas scheduling is the process of assigning temporal intervals to the

actions of a plan. Figure 2.2 shows the agents involved in the scheduling process.

What makes the distinction between planning and scheduling even less clear is that

the addition of temporal constraints is handled by the planner rather than the scheduler.

The temporal constraints define the level to which actions from the plan must be complete

relative to the execution status of other actions. For instance, a temporal constraint may

state action A must be fully completed and action B must be started for action C to begin

execution. Figure 2.3 shows the visualization of temporal constraints on plan actions. In

contrast, an example of the scheduler output would be action C will be executed at time t.

18

Planner

Controller

Goal(s)

Model
(Domain)

Current
State

Plans

System

Actions

Events

Sensor

Observations

Feedback

Scheduler

Schedules

Figure 2.2: The agents involved in the scheduling process.

2.3 Planners: Examples and Architectures

According to [11], examples of heavily studied automated planners include:

• HSP [5], performs a forward, state-space, heuristic search;

• PLANEX [19], conducts reactive planning by inserting monitoring actions into plan

execution;

• Metric-FF [32], uses graph-plan plan length as a heuristic in a hill-climbing state-

space search;

19

Figure 2.3: Temporal constraints on plan actions as visualized by the “Domain Editor” of
I-X.

• SIPE [73, 76] and SIPE-2 [46, 74], provides a GUI for mixed-initiative plan selec-

tion;

• UCPOP [51], uses a sound and complete partial-order planning algorithm; and

• Nonlin [67], conducts domain-independent, partial-order, hierarchical task network

planning.

O-Plan is a plan-space HTN planning agent written in Lisp. One contribution of O-Plan was

the introduction of the <I-N-OVA> constraint model of activity. <I-N-OVA> stands for

Issues, Nodes, Orderings/Variables/Auxiliary, which is a method of representing plans as

sets of constraints. During the development of I-X, the <I-N-OVA> model was changed

to <I-N-C-A> (discussed in Section 2.3.1).

Another contribution of O-Plan was the separation of planning, task assignment, and

execution agents (introduced in Section 2.2.1). This separation led to the development of

the I-X framework and a successor to O-Plan, I-Plan.

20

2.3.1 I-X/I-Plan

As described in [69], I-X is a framework with a number of different aspects intended to

create a well-founded approach to allow humans and computer systems to cooperate in the

creation or modification of some product such as a design, physical entity or plan — i.e., it

supports cooperative synthesis tasks. The I-X approach involves the use of shared models

for task-directed cooperation between human and computer agents who are jointly explor-

ing (via some, perhaps dynamically determined, process) a range of alternative options for

the synthesis of an artifact such as a design or a plan (termed a product).

I-X represents a product as a set of nodes making up the components of the prod-

uct model, along with constraints on the relationship between those nodes, and a set of

outstanding issues. This representation is labeled <I-N-C-A>, which represents Issues,

Nodes, (Critical and Auxiliary) Constraints and Annotations, and is the successor of the

<I-N-OVA>model.

Within the I-X framework is an architecture, I-Plan, in which situated agents, such as

planning agents, can be created. Based on O-Plan, I-Plan uses the same conceptual sepa-

ration of command (task assignment), planning, and execution monitoring roles. Another

technique shared by both I-Plan and O-Plan is a hierarchical planning system which can

produce plans as partial orders on actions.

I-Plan is a plan-space HTN planner which uses the I-X framework to represent the

domain and world state. A description of I-Plan’s planning algorithm can be found in

Section 4.4.1.

2.4 Plan Optimization

Classical planning attempts to find a sequence of actions that satisfies the classical

planning problem. By relaxing the “Restricted Goals” assumption from Section 2.2.2,

cost/utility can be incorporated into the satisfaction problem. This allows a lower-bound

21

on the utility of a plan to be specified.

In certain cases, however, it is more appropriate to find a plan with the highest utility,

rather than a plan that satisfies all the necessary requirements. Changing the planning

problem from satisfiability to domain-dependent optimization involves the incorporation

of preferences or soft constraints into the planning domain.

2.4.1 Plan Metrics

According to [22], “Plan metrics specify, for the benefit of the planner, the basis on

which a plan will be evaluated for a particular problem.” Plan metrics were added to the

PDDL specification (see Section 2.2.2) in version 2.1.

The addition of plan metrics has several implications on the planning problem. Adding

the notion of domain-dependent cost/utility is vital in practical planning since users seek to

find the “best” plan rather than any satisfying plan.

One use of plan metrics is as a mechanism for evaluating plans. [46], for example uses

domain metatheory as a mechanism for generating qualitatively-different plans. Similarly,

[71] uses multi-dimensional plan evaluation criteria as a way to present dominant plans to

task assignment agents.

Plan metrics can also be used as a way of evaluating planners themselves. [79] warns

against this practice, stating that

Planning should be viewed as a resource-bounded reasoning activity that pro-

vides useful information to an execution architecture in selecting actions. The

overall utility of a planner is determined by the effect it has on the agent be-

havior.

Plan metrics can, however, be used to guide a planner toward “better” solutions. [5]

discusses the success of heuristic-search planners in international planning competitions

22

(IPC/AIPS). Of the planners discussed in Section 2.3, some of the best performing are FF

and HSP.

One difficult aspect when using heuristic-search planners is choosing the heuristic func-

tion. Several papers [44, 6] aim to extract heuristics from declarative problem representa-

tions.

2.4.2 Preference-based Planning

The International Conference on Automated Planning and Scheduling (ICAPS) is a

forum for researchers and practitioners in planning and scheduling. In 2006, ICAPS hosted

a workshop on “preferences and soft constraints in planning.” Until then, “with exception

of MDPs, nontrivial user preferences have only recently been integrated into AI automated

planning” [2]. Since then Preference-Based Planning (PBP) is a large research area in AI.

In PBP, a “criterion to determine when a plan is preferred to another” is provided. PBP

is closely related to oversubscription planning (described in [61]), but more general because

it includes soft constraints. The definitions of some key concepts in PBP follow.

Definition 2. Soft problem goals are goals that are desirable, but that do not necessarily

have to be achieved [2]. For example, if a primary goal is to go to bed, one soft goal might

be to obtain another pillow.

Definition 3. Soft constraints on plan trajectories are constraints over possible actions in

the plan and intermediate states reached by the plan [2]. For example, if two actions can

be executed simultaneously, but are preferably executed serially, a soft temporal constraint

may be added.

Definition 4. Preferences include both soft goals and soft constraints [72]. [26] explains

that preferences are goals that don’t have to be satisfied, in contrast to plan metrics from

PDDL 2.1 which associate weighted expressions with utility (see Section 2.4.1).

23

State trajectory constraints describe temporal control knowledge and temporally ex-

tended goals [15].

PBP is also related to partial satisfaction planning (PSP). In PSP, the net benefit of a

plan (P) is a function of the goals that it satisfies and the costs incurred.

NETBENEFIT(P) =
∑

GOALSREACHED(P)−
∑

COST(P)

This method neglects some of the intricacies of goal/cost interactions, but has the same

runtime complexity as classical planning [2].

For PBP, a language that can sufficiently express the definition of preferences as well as

the aggregation of the preferences is required. These languages can be quantitative, quali-

tative, or some hybrid [2]. Quantitative languages include those used in decision-theoretic

planning (discussed in [8] and Section 2.5.2), partial satisfaction planning (discussed in

Section 2.4.2), and PDDL version 3 (discussed in [22] and Section 2.4.1).

Algorithms for solving PBP are classified along three properties: optimal, k-optimal,

and incremental. An optimal algorithm eventually outputs an optimal plan. K-optimality is

the property that, given a positive integer k, the algorithm outputs an optimal plan whose

makespan is at most k, where the makespan is the minimum amount of time in which

we can perform the plan. An incremental algorithm is one where each plan output is better

than the previous. This property does not necessarily imply an “anytime” algorithm unless

there are no hard goals.

2.4.3 Dominant Plans

A goal of this project is to help agents choose between multiple plan options. One way

to accomplish this is by distinguishing dominant plans from those that are dominated [71].

To define the notion of plan dominance, we look to the field of multicriteria decision

making. Multi-objective optimization (MOO) examines the problem of choosing a strategy

24

from a list of possible strategies, si ∈ S, given a set of utility functions uj(s) ∈ U . The

first step in solving MOO is to find the Pareto points in the multi-objective problem (MOP).

Multiple Pareto points can exist for each combination of utility functions. The final step of

MOO chooses between the strategies represented by Pareto points [45].

Definition 5. A plan, p, is dominant to other plans, P− in respect to two or more plan

evaluators e1...k ∈ E when ∀e ∈ E, p− ∈ P−[e(p) ≥ e(p−)].

This definition corresponds to the Pareto points in the MOP rather than the result of the

MOO. The tradeoffs between plan evaluators described by the dominant plans are presented

for selection to the execution agent.

2.5 Planning Under Uncertainty

Some of the assumptions from Section 2.2.2 commonly need relaxation to be used in

practical planning. In real life, actions do not have completely deterministic effects; agents

cannot be completely omniscient; and goals are more complex than sets of states. The

consequence of relaxing the corresponding assumptions, determinism, full observability,

and reachability goals, is labeled planning under uncertainty [49].

The aim of planning under uncertainty is to design AI planners for environments where

there may be incomplete or faulty information, where actions may not always have the same

results and where there may be tradeoffs between the different possible outcomes of a plan

[4].

According to [53], there are four sources of uncertainty in planning. These are as

follows:

• missing information due to partial observability;

• unreliable resources, for example faulty equipment;

• stochastic phenomena as seen in all measurement variance; and

25

• inherently vague concepts as a result of poor domain/problem modeling.

There are several categories of approaches towards managing uncertainty. The ap-

proaches vary in the times and methods of reasoning over relaxed assumptions. Some

approaches, such as probabilistic planning, decision-theoretic planning, and contingency

planning, choose to reason over uncertainty at planning-time. Other approaches, such as

reactive planning, react to uncertainty at execution-time. Still other approaches interleave

the functions of planning and execution agents in an attempt to cope with relaxed assump-

tions.

2.5.1 Uncertainty in the IED detection scenario

In the IED detection scenario, uncertainty exists in several forms. First, the goal is to

find the “best” solution, rather than “any” solution. This requires relaxation of the reach-

ability goals assumption. Furthermore, networking conditions (firewalls or MANET par-

titioning) could limit communication between certain agents. Therefore, the full observ-

ability assumption is unrealistic and must be relaxed. Yet another unrealistic assumption

for this domain is static domain. The environment can be changed by a variety of factors,

not all of which can be modeled, so the domain can change. A realistic model of the IED

detection scenario is possible when these assumptions are relaxed.

The following sections discuss the approaches to planning under uncertainty, as well as

their advantages and disadvantages.

2.5.2 Decision-Theoretic Planning

According to [34], “Decision theory is based on the axioms of probability and utility.”

The purpose of decision theory is to formalize decision making under uncertainty. “Where

probability theory provides a framework for coherent assignment of beliefs with incomplete

information, utility theory introduces a set of principles for consistency among preferences

26

and decisions.” Here Horvitz et al. consider decisions to be ground action instances and

preferences represent the decision maker’s utility in the outcome states. Note that prefer-

ences compare resultant states rather than actions, since the goal of decision theory is to

elicit better outcomes on average [34].

Feldman and Sproull [17] are one of the first to investigate the combination of decision

theory with artificial intelligence. The reason for combining these fields is that decision

theory adds expressivity to symbolic reasoning. The intersection of these two fields re-

sults in representations with increased expressiveness. Also, decision theory improves the

ubiquity of planning, allowing more domains to be represented in traditional planning rep-

resentations. Lastly, decision theory lays the groundwork for provably optimal planning.

Decision-theory, as applied to AI, extends the problem formulations to allow for statements

about alternative actions and their resultant valuations.

Given a probability distribution over the possible outcomes of an action in any

state, and a reasonable preference function over outcomes, we can define a

utility function on outcomes such that whenever the agent would prefer one

plan over another, the preferred plan has higher expected utility. The task of

the planner (is) to find the plan with the maximum expected utility (MEU) [17].

2.5.3 Probabilistic Planning

Probabilistic planners use information about the probabilities of the possible uncertain

outcomes to construct plans that are likely to succeed. According to [38], probabilistic

planning can further be split into approaches that represent plans as Markov Decision Pro-

cesses (MDPs) and Symbolic Planning Approaches.

Koenig [37] explains that MDPs are useful for solving probabilistic and decision-

theoretic planning problems. Markovian decision-theoretic planning algorithms work by

producing reaction strategies rather than sequences of actions. The idea is to restrict the

27

planner’s attention to “a set of world states that are likely to be encountered in satisfying the

goal” [12]. MDP representations are best utilized by execution agents that can determine

world state with some accuracy, whereas symbolic planning is better utilized by stateless

execution agents [38].

Symbolic planning is another type of probabilistic planning that varies the way that the

domain and planning problem are represented. The algorithms presented in [13, 28] take

the probability distributions of world-states as input and return plans that make the goal

condition true with no less than a given probability threshold. Other approaches, such as

[43, 14] merge plans created from every possible initial-state.

Riley and Veloso [57] examines probabilistic planning as a way to conduct multi-agent

planning in a Robo-Soccer domain. The execution agents have very limited observability,

so failure detection is conducted via temporal constraint violations. Plans are based on

opponent behavior models and the work focuses on using the recognized information for

purposes of predicting and adapting to future behavior.

2.5.4 Interleaving Planning and Execution: Contingency Planning

Where decision theoretic planning reasons about uncertainty at plan-time, contingency

planning deals with uncertainty by interleaving the planning and execution agents [73, 76].

According to [56, 55], contingency plans are needed when there is uncertainty in the

world such that the planner cannot make a decision in advance. Pryor and Collins include

decision points in the plans they communicate the the execution agent. Before the deci-

sion points, the planner inserts information-gathering actions, whose preconditions include

goals to obtain the information needed for the decision step.

This form of planning selects actions based on the results of executing other actions.

“It thus effectively splits the plan into a set of branches, one for each possible outcome of

the uncertainty” [56]. [13] labels this symbolic planning approach contingency planning.

28

This approach only works if the execution agent has some way of monitoring or sensing

the world state.

Combining probabilistic planning and contingency planning is the resulting ability to

judge whether it is worth planning for a given contingency [56]. One type of contingency

planning, conformant planning is the problem of finding a sequence of actions that is guar-

anteed to achieve the goal for any possible initial state and nondeterministic behavior of

the planning domain. This approach is designed for execution agents that have no way of

sensing the environment [10].

2.5.5 Reactive Planning

In reactive planning, no specific sequence of actions is planned in advance. Instead

the planner produces a set of condition-action rules, for example, Universal Plans [59] or

Situated Control Rules (SCRs) [14].

When utilizing reactive planning, more reasoning is required at execution time to use

reaction rules than is required to execute a contingency plan. In completely reactive plan-

ning, [20] “describes an investigation into reactive planning that takes the extreme position

of using no prediction of future states at all. Plan selection is done entirely at execution time

and is based only on the situation existing then.” Suchman labels this approach Situation-

driven Execution [64] and Firby created a plan representation for this approach: Reactive

Action Packages (RAPs) [21].

Georgeff and Lansky [23] describe an executable specification language, the Procedu-

ral Reasoning System (PRS). PRS is a means for representing knowledge about procedures,

which contains semantics to specify facts about processes and their behaviors. The under-

lying mechanism behind PRS is an intention graph of plan actions (KAs) and meta-KAs

control execution.

29

2.6 Plan Execution and Monitoring

Section 2.5 discusses the sources of uncertainty. Uncertainty can cause plans to be less-

effective, or completely ineffective, but the effects can sometimes be reduced. Certain types

of uncertainty can be eliminated using better hardware or engineering the environment, but

this method can increase the cost of planning or lessen the environmental applicability.

On the other hand, we can reason about uncertainty during planning. This method results

in more complex models and therefore higher planning complexity. The last method for

decreasing the effects of uncertainty is by tolerating the uncertainty. In this approach, plan

execution monitoring helps prepare for failing execution.

Isermann and Balle [35] define execution monitoring as “a continuous real-time task

of determining the conditions of a physical system, by recording information, recognizing

and indicating anomalies in the behavior.” The purpose of monitoring plan execution is to

find faults, a fault being “an anomaly in the behavior of the monitored system.”

Plan execution monitoring has been studied extensively by control theorists as the fault

detection and isolation (FDI) problem [53]. The functional concepts of monitoring systems

include:

• Fault Detection — an anomaly has occurred in the behavior of the monitored sys-

tem;

• Fault Isolation — classification of the fault (aka fault diagnosis); and

• Fault Identification — determines the magnitude of the fault.

Gertler [27] uses three criteria for evaluating execution monitoring systems: reaction

speed, robustness, and isolation performance. Reaction speed measures the amount of time

between the actual fault and its detection. Robustness indicates the monitor’s ability to op-

erate “in the presence of noise, disturbances, and modeling errors.” Isolation performance

measures the number of correct/incorrect fault type assignments.

30

Hammond et al. [30] promotes the importance of fault isolation by showing that propi-

gating failure information back to the planner can drastically help in the replanning phase.

Hart et al. [31] describes a representation for action progress expectations, which Hart

et al. label envelopes. The term comes from performance envelopes in engineering dis-

ciplines which describe performance profiles. The point of these envelopes is to avoid

wasting time executing costly actions when it is clear that they will fail prior to their com-

pletion. Using envelopes allows an agent to:

• modify a failing plan so as to prevent its failure,

• abandon a failing plan,

• retire surplus resources from a succeeding plan,

• improve a plan going unexpectedly well, and/or

• reduce communication between cooperating agents (sharing expectations means they

only have to communicate when the expectations are violated).

Chiang et al. [9] lists three classifications of execution monitoring. The following

sections explain the analytical, data-driven, and knowledge-based approaches in detail.

2.6.1 Analytical Approach

In this approach, the presence of a fault is derived from the difference between two

analytically generated quantities. The difference is called residual and the algorithm that

processes the measurable inputs and outputs to a system is called residual generation.

The analytical approach utilizes some decision making algorithm, d(r) where r is a

residual, based on residual generation, r(s) where s is a signal from a system. The process

relies on the concept of analytical redundancy and is influenced by the residual genera-

tion technique. [50] identifies three methods of residual generation: parameter estimation,

parity relations, and observers.

31

Some examples of papers that use analytical methods for fault detection are the Proce-

dural Reasoning System (PRS) [24] and Reactive Action Package (RAP) [21]. An illustra-

tion of the analytical approach is shown in Figure 2.4.

System

Residual
Generation

Decision
Making

Figure 2.4: The main components of the analytical approach towards fault detection.

Parameter Estimation

In parameter estimation, residuals are calculated as the difference between a running

system and a reference model of “normal” system execution. This method requires that a

reference model be created and maintained a priori.

Parity Relations

Parity relations are mathematical equations that describe a system based on its param-

eters. In this method, residuals are derived from consistency checks between a reference

model and the currently running parity relations.

32

Observers

Observer-based methods of residual generation differ from the previously described

methods because they do not require system model parameters to be derived a priori. The

goal of observers is to estimate system outputs during execution of a system. The residual

is then the difference between the estimated and the actual system output.

According to [53], most analytical AI research falls into the observer category. One

example, the Kalman filter, is used quite often to estimate values from noisy sensor data.

2.6.2 Data-driven Approach

Data-driven approaches do not rely on mathematical models, but instead they are di-

rectly derived from sensor data. For example, a fault might be detected if sensor data

exceeds some range of deviation from the mean of the previously collected data.

These approaches are classified by the number of variables included in their monitor-

ing. Single-variable approaches are labeled univariate statistical monitoring and all other

approaches are labeled multivariate statistical monitoring.

Pettersson has studied data-driven approaches in depth in [53, 52]. These approaches

do not require users to construct models of the system. For this reason, they are labeled

model-free approaches to execution monitoring. In contrast, model-based methods of exe-

cution monitoring run the risk of interpreting modeling errors as faults in system execution.

Model-free approaches, however, are only limited by the amount of sensor data used to train

the behavior-based monitor.

Although [52] states that most robotics applications use model-based execution moni-

toring, [7] is one example of a research effort that utilizes model-free execution monitoring.

In [7], Bouguerra et al. encode semantic information as description logics and use these to

derive expectations for robot behavior.

33

2.6.3 Knowledge-based Approach

Knowledge-based approaches to execution monitoring are designed to simulate human

problem-solving. They can be model-free, model-based, or some hybrid of other meth-

ods. To offset the high cost of human behavior simulation, knowledge-based monitoring

systems perform fault isolation in addition to fault detection. [53] lists three categories of

knowledge-based approaches: causal analysis, expert systems, neural networks.

Causal Analysis

Causal analysis methods model fault-symptom relationships to perform fault isolation.

Of the causal analysis approaches, several papers [36, 75] discuss multi-agent execution

monitoring.

The work in [36] focuses on ”overhearing” team members. Overhearing, in this context

uses models of social relationships to monitor task execution.

Wilkins et al. [75] uses ”Execution Assistants” to perform multi-agent, causal analy-

sis execution monitoring in dynamic domains. Unlike [36], Wilkins et al. rely on agent

communications to transfer agent state changes. This state information is used to populate

agent beliefs in the BDI model.

Expert Systems and Neural Networks

Expert systems and neural networks are used to directly model human/expert behavior

in execution monitoring. Expert system approaches are model-based, whereas the strengths

of neural networks are exhibited by ”learning” from sensor data, thus making them appro-

priate for model-free monitoring.

The Saphira architecture [40] is one example of an execution monitoring system im-

plemented using an expert system. [52] explores the possibility of using simulation data to

train an artificial neural network.

34

2.7 Qualitatively Different Plans

There are two high-level techniques of finding qualitatively-different plans: domain-

independent, and domain-dependent.

2.7.1 Domain-independent

One advantage to using domain-independent methods of finding qualitatively-different

plans is that they require no meta-data about the domain to derive different plans. One

method of finding qualitatively-different plans without additional information gathers high-

level preferences from the user. This approach is labeled, mixed-initiative.

Although TRIPS and TRAINS are considered mixed-initiative planning assistants, the

authors explicitly say, “traditional planning technology does not play a major role in the

system” [18]. The systems are mixed-initiative in that they help to repair initial tasks,

however their approach aims to perform plan repair on an existing plan rather than generate

unique plans.

Srivastava et al. [63] investigate methods to find inter-related plans. They use a func-

tion, DISTANCE(plan1, plan2), to represent the similarity/diversity of two plans. The func-

tion could use any combination of the following three domain-independent criteria:

• the actions present in the plan,

• the set of stages (or states) that execution takes, and

• the causal chains that support plan goals.

Tate et al. [66] use a mixed-initiative approach, which is largely driven by the task

assigner agent. The agent selects assumptions on the top-level activities, and the planner is

then responsible for refining the lower-level plan activities.

35

2.7.2 Domain-dependent

The advantage of using domain-dependent methods of finding qualitatively-different

plans is that they incorporate domain information into the inter-related plan measurements.

This is accomplished by adding new (domain-dependent) criteria to definition of the DIS-

TANCE function. In [46] and [47], Myers et al. use the concept of domain metatheory to

evaluate plans. In addition to providing a mechanism for comparing sets of plans, metathe-

ory also provides capabilities to summarize plans. The conceptual components of metathe-

ory are as follows:

• template features (which allow us to differentiate between functionally equivalent

alternatives),

• task features (which compose a typing system), and

• roles (which describe the capacity to which an individual resource is used).

Myers uses these components to direct planners towards solutions with distinct semantic

traits.

2.8 Measuring Planners

As mentioned in Section 2.4.1, [79] explains the difficulties in evaluating planners.

Because there are fundamental differences in the purposes of modern planners, comparing

them can be extremely complex. Furthermore, there are multiple dimensions on which

planners can be categorized. These factors include:

• correctness,

• quality of solution,

• failure rate,

• resources required to generate plans,

36

• robustness of planner,

• graceful degradation, and

• user friendliness.

Zilberstein also explains that comparison to human performance is complicated due to

complex human behaviors. However, by evaluating the system based on the improvement

in execution, we can compare different types of planning. “The overall utility of a planner

is determined by the effect it has on the agent behavior.”

2.8.1 Goals-Question-Metric

Basili et al. [3] present the Goal-Question-Metric (GQM) approach for deriving metrics

from project requirements. In GQM, Goals specify issues, objects, and viewpoints. Strictly

structured Questions are used to quantify the degree to which goals are met, and some

goals may require several questions to assess. Finally, Metrics are data used to answer the

questions and assess the state of the goals.

The GQM approach deals with two criteria: performance and effectiveness. Effective-

ness attempts to capture how well the system accomplishes its goals, whereas performance

deals with the utilization of resources during system execution.

2.9 Network-Centric Systems and Network-Awareness

The definition of network-centric systems states that the performance of the system is

dependent on the quality of underlying network links. Consider a network file system for

example. If the quality of the communication link between the client and server diminishes,

the read and write speeds to the network file system will suffer as a result.

Static, homogeneous networks lack variation in quality of network links by definition.

Therefore, the concentration is on dynamic networks, such as MANETs, and heterogeneous

networks as described by Wu et al. [78].

37

According to [70], there are many aspects of network-centric efficiency that can be

measured. In this work, the authors examine Quality of Service (QoS) metrics such as:

• RSSI,

• packet loss,

• latency, and

• throughput.

Furthermore, the authors recognize the importance of end-user experience by measur-

ing Quality of Experience (QoE) metrics such as:

• situational awareness application latency, and

• VoIP Mean Opinion Scores (MOS).

Mahambre et al. [42] discusses QOS-aware, adaptive event-dissemination middleware.

In doing so, the authors define characteristics of middleware. One such characteristic is un-

derlay awareness. According to Mahambre et al. middleware exhibits underlay awareness

when its

“construction strategy considers some of the underlying physical network’s

properties, including path disjointedness (absence of common nodes or physi-

cal links in different overlay paths), hop count (number of physical nodes be-

tween a pair of overlay nodes), bandwidth, physical distance information, and

failure statistics. This makes the overlay sensitive to changes in the underlying

physical network — that is, the overlay dynamically adapts to resource-based

adaptation triggers” [42].

I make use of this definition when I define the concept of network-awareness in Defini-

tion 6.

38

Another contribution of Mahambre et al. [42] is splitting underlay awareness into two

categories: underlay-proximity-aware and underlay-quality-aware. Underlay-proximity-

aware middleware uses the physical nodes’ network proximity, such as a neighbor list

provided by a routing protocol. A yet unimplemented category of underlay awareness,

underlay-quality-aware, addresses “physical link quality, failure probabilities, node degree,

physical network diameter, and QoS guarantees” in the middleware layer.

2.10 Scenario Background

The motivation for this project is a service composition scenario, particularly in Im-

provised Explosive Device (IED) adaptive change detection. Papers that use planning to

accomplish service composition include [60, 62] and visual IED change detection is docu-

mented in [41].

2.11 Related Work

I have conducted research in the following areas:

• Mapping service composition to automated planning;

• The classic automated planning problem and its variants;

• The role of agents in automated planning problems;

• Specific constraint models used by I-X and I-Plan;

• The effect of uncertainty on solving automated planning problems;

• Types of execution monitoring in planning systems;

• Qualitatively different plan generation techniques;

• Methods for measuring planning, execution, and monitoring agents;

39

• Network-centric systems and considering network properties in the application layer.

The motivating scenario described in Section 1.1 is an instance of a web service com-

position problem as described by [33]. Gu et al. [29] assure QoS over web service compo-

sitions, but their solution does not allow domain-specific evaluation criteria.

Sirin et al. [60] and Hoffmann et al. [33] provide techniques for mapping the au-

tomated composition of semantic web services to an automated planning problem, where

domain-specific evaluations have been studied in [46, 47]. The IED detection scenario

exhibits certain characteristics that cause uncertainty at plan-time. Thus, I investigate plan-

ning under uncertainty and determine ways to cope with uncertainty.

Once the service composition problem is stated as (a variant of) an automated planning

problem, plan evaluations are used as heuristics to guide the planning search and choose

among sets of plans. Next, I investigate methods of executing plans and monitoring the

execution using FDI. Finally, a study of network-centric systems and network-awareness

gives insight into methods of incorporating network properties into planning, execution,

and monitoring agents.

40

3. Formalization

This chapter establishes a formal problem statement which builds on the planning no-

tation established in Section 2.1. Next, Section 3.2 states my hypothesis and Section 3.3

gives a detailed explanation of the motivating IED detection scenario.

41

3.1 Formal Problem Statement

P the planning problem P = 〈Σ, s0, SG〉

Σ the domain Σ = 〈S,A,E, γ〉

S the set of states

s0 the initial state

Sg the set of goal states

A the set of actions, A = {a0, a1, . . . , a|A|}, where each a =

(precond(a), effects−(a), effects+(a));

E the set of system events

γ the state transition function, γ : S × A→ S

P the set of plans, P = {p0, p1, . . . , p|P |} where each plan p ∈ P is a totally ordered

sets of actions

H the network hosts H = {h0, h1, . . . , h|H|}

ωH the host link weighting, ωH : H ×H → (0, 1]. The value represents the quality of

the link, 0 being the lowest and 1 the highest. This link is only conceptual and the

actual data route may go between other hosts or routers

precond(a) returns the preconditions of action, a

effects+(a) returns the positive effects of action, a

effects−(a) returns the negative effects of action, a

offers(a) returns the precondition(s) stating that a host offers the service repre-

sented by action, a

host(a) returns the single host h ∈ H on which action a can be run, or ∅ if the

action is ungrounded

resources(a) returns the set of resources (parameters) of action a, or {} if the action

is ungrounded
Most of this notation is derived from the formalization of the classical planning problem

42

from [49]. My problem formalization contributions are H , ωH , offers(a), host(a), and

resources(a).

Host 1

Planning Agent

Execution
Agent

Host 2

Service 1

Service 2

Host 3

Service 1

Service 3

Host 4

Monitoring
Agent

Service 2

Host 5

Monitoring
Agent

Service 3

Figure 3.1: The conceptual diagram of the formal problem statement. Rounded rectangles
represent hosts h ∈ H , which are capable of executing a set of services. Planning, execu-
tion, and monitoring agents reside on hosts. Lines between hosts represent communication
links between the hosts and the thickness of the line is a representation of link quality, ωH .

Figure 3.1 shows the conceptual diagram of the formal problem statement. Hosts, h ∈

H are connected via a network, with links from host hi to hj . Each link also has a relative

quality, ωH , illustrated as the thickness of the connecting lines.

Figure 3.2 shows the role of agents in the formal problem statement. There are three

types of agents: planning, execution, and monitoring. Each agent runs on a host and the

agents communicate with each other over the network.

Also, Figure 3.2 shows the data flow between agents in the formal problem statement.

43

Host 1

Planning Agent

Execution
Agent

Plans

Host 2 Host 3 Host 4

Service Calls

Faults

Host 5

Figure 3.2: The data flow and role of agents in the formal problem statement. There
are three types of agents: planning, execution, and monitoring. Each agent runs on a
host and the agents communicate with each other over the network. The planning agent
is responsible for creating plans and passing them to the execution agent. The execution
agent invokes services on the hosts according to the plan. The monitoring agents report
execution faults to the planning and execution agent as needed. Each network link has
a relative quality, ωH , illustrated as the thickness of the lines connecting hosts. Service-
specific, inter-host communications are not illustrated in this diagram.

The planning agent is given the tuple IP = 〈Σ, s0, Sg, H, ωH〉, and constructs a plan pI ∈

P . The execution agent accepts IE = 〈pI , H, ωH〉, and invokes the totally ordered service

calls described by the actions in pI . The plans can be augmented with temporal constraints

to better describe the sequence of service invocations.

Figure 3.3 shows the sequence diagram for the plan execution process. Plans are cre-

ated by the planning agent and passed to the execution agent. The execution agent causes

changes to a system, which can be sensed by monitoring agents. When a monitoring agent

detects a fault, it isolates and identifies the fault (see Section 2.6). Based on the magnitude

of the fault and the capabilities of the agents, the monitoring agent reports the fault to the

execution agent (for plan repair) or planning agent (for replanning).

The problem is to find and execute pI ∈ P where pI = {a0, a1, . . . , a|pI |} and the

44

Planning Agent Execution Agent Monitoring Agent

Plan(s)

[major fault]
Fault

[minor fault]
Fault

Figure 3.3: The sequence diagram for the plan execution process. The planning agent
is responsible for creating plans and passing them to the execution agent. The execution
agent invokes services on the hosts according to the plan. The monitoring agents report
execution faults to the planning and execution agent as needed.

execution of pI yields the best domain-dependent and network-centric evaluations.

Definition 6. An agent exhibits network-awareness if changes to ωH cause the agent’s

output to change while all other inputs remain constant.

3.2 Hypothesis

In intelligent multiagent systems, agents conduct reasoning and coordination within the

system. Coordination, however, is difficult when the cost and reliability of communications

is not fixed. Peysakhov et al. [54] shows that incorporating “network awareness” into the

45

agent’s reasoning improves the performance of an intelligent system.

Therefore, I hypothesize that incorporating network-centric system aspects into plan

construction agents, execution agents, and monitoring agents improves system performance

and effectiveness. Furthermore, incorporating network-awareness into different stages of

the planning process affects performance and effectiveness differently depending on the

dynamism of the network. Applications running on mostly-static networks benefit most

from network-awareness at plan-time, whereas applications running on highly-dynamic

networks receive the greatest benefit from network-awareness at runtime.

3.3 Motivating Scenario

The motivating scenario models service composition on a constrained network as an

HTN planning problem where simple tasks represent service calls and complex tasks model

service compositions. I adopt the OWL-S process ontology to describe the composition

of web services as in [60].1 Sirin et al. describe this behavior as an “action or process

metaphor. . . primitive and complex actions with preconditions and effects.” I then map the

web service composition problem to the automated planning problem [49] by representing

services as actions.

In this scenario, there are several locations that must be monitored for Improvised Ex-

plosive Devices (IEDs). Monitoring can be accomplished using services provided on nodes

throughout the network — via manual (human) searching or visual change detection. Each

combination of IED detection method, resource(s) used, and order of execution yields dif-

ferent plan evaluations.

A static model of communication properties dictates the values of network-centric plan

evaluations. Evaluators for bandwidth usage and link quality represent network constraints.

Bandwidth is consumed by plan actions which require non-local data or services. I model

1http://www.w3.org/Submission/OWL-S/

46

bandwidth to show preference to local information rather than reach-back interfaces. Link

quality evaluations are used to favor low-latency network communications in local area net-

works. As with other plan evaluators, network-centric evaluators are affected by planning

actions and their constraints.

I seek to exploit the tradeoffs between the evaluation criteria to return qualitatively-

different plans to the task assignment agent. The scenario is illustrated in Figure 3.4. Red

rectangles represent physical locations that require IED monitoring — an IED has been

planted in location 2. Humans, robots, and UAVs are the entities that are capable of per-

forming IED detection techniques. Cameras represent the geographical positioning of re-

sources required to perform visual change detection. The goal is to minimize the overall

plan cost where that cost can be affected by not only plan actions, but also their ordering

constraints and the resources they utilize.

The following are the planning actions for the IED detection domain:

• SWEEPFORIEDS: defines the list of locations to be searched.

• CHECKFORIEDAT: satisfied by manualSearch or photographicSearch.

• MANUALSEARCH: complex task for a human search of a location.

• PHOTOGRAPHICSEARCH: complex task for a change detection search of a location.

• CONDUCTSCAN: a human scans a location for an IED.

• ACQUIRECAMERA: a resource acquires a camera (a requirement for a change detec-

tion task).

• TAKEPHOTO: take a photo of a location using a camera.

• GETOLDPHOTO: get the last photo taken of a location (a requirement for comparing

photos).

• COMPAREPHOTOS: compares two or more photos for a change that would indicate

an IED is present at a location.

47

location 7

location 5

location 3

location 1

location 8

location 6

location 4

location 2

robot 2

UAV 1 UAV 2

robot 1

human 1

human 3

human 2

Figure 3.4: Conceptual diagram of the IED detection scenario. Several locations are
monitored for IEDs using manual searching or visual change detection.

• PHYSICALMOVE: move a resource from one location to another.

• REPORTRESULTS: the results of a scan are reported to a central authority.

Also, there are high-level resources with types: net-nodes, locations, and cameras. Net-

nodes here represent anything that can move in physical space or communicate over the

network. Thus, both humans and UAVs are represented by net-nodes. To distinguish be-

tween these types of net-nodes, I use net-node properties. For example, a UAV net-node

has an average speed around 370 kph versus a human net-node which is about 95 kph (trav-

eling in a car). Locations are geographical places where net-nodes can move, and cameras

48

are resources required for creation of photographs.

49

4. Technical Approach

As discussed in the background section, there are three types of agents involved in the

plan execution process: planning agents, execution agents, and monitoring agents. My ap-

proach to adding awareness to network-centric systems is to reason over network properties

in each agent.

Each agent benefits differently from knowledge of different network properties. Network-

aware planning agents can use network-based plan evaluations to guide a heuristic plan-

space search. Execution agents exhibit network-awareness in plan repair and resource

grounding. Network-aware monitoring agents monitor network properties to find failures

in plan execution.

This chapter formalizes the purpose of each agent and discusses methods of adding

network-awareness to each agent. Also, this chapter explains the implementations of agents

that are used in the experiments.

4.1 Planning Agents

The planning agent is responsible for producing a plan. The goal of the plan is to give

advice to the execution agent. The main implementation differences between the planning

agents stem from the technique used to guide the planner’s search strategy.

Following the notation introduced in Section 3.1, the purpose of a planning agent is to

accept the tuple IP as input and produce a plan in the form of an ordered service composi-

tion pI .

50

4.1.1 Domain-independent Planning Agent

The domain-independent planning agent is based on I-Plan’s default search strategy,

which uses a combination of exploration and optimization to return different plans.1 As the

planner traverses the search space, it switches between a depth-first exploration strategy

and an A* optimization strategy using the number of activities in the partial plan as its

admissible heuristic. The planner starts by traversing the space in a depth-first manner and

when it encounters an alternative whose constraints cannot be satisfied, it backtracks using

the A* search.

The domain-independent planning agent utilizes domain-independent heuristics to guide

the planner’s search strategy. Included in these heuristics are the following:

• the number of steps the planner took to generate a plan;

• the number of alternatives the planner uncovered along its way;

• the number of options below the revealed alternatives;

• the number of alternatives left unexplored;

• the longest path along temporal ordering constraints; and

• the number of duplicate plans found before returning a new plan.

4.1.2 Random Planning Agent

The random planning agent conducts a depth-first search, selecting randomly among

branch-point alternatives in the plan-space search. Algorithm 1 shows the process of the

random planning agent.

1All planning agents presented in this thesis were implemented using Tate et al.’s plan-space HTN planner,
I-Plan [11].

51

Algorithm 1 CONSTRUCTRANDOMPLAN(P)

Require: P is the planning problem for which this algorithm constructs a plan to solve.
Ensure: s0 is the initial state of P , toVisit is a deque of branch-point alternatives in the plan-space, visited is a list of alternatives

already traversed, randomize(z) is a function that returns the ordered set z with all its original elements in a random order, and
solution(x) is a boolean function that returns true if x meets solution criteria set by the planner.

1: toVisit.push(s0)
2: while ¬ toVisit.empty() ∧ ¬ solution(toVisit.peek()) do
3: v ← toVisit.pop()
4: if v /∈ visited then
5: visited.add(v)
6: r ← randomize(v.children())
7: toVisit.push(r)
8: end if
9: end while

10: return toVisit.peek()

4.1.3 Plan Evaluation Guided Planning Agent

The guided planning agent defines domain-dependent plan evaluators for criteria that

are important to the end-user. In my case, I create evaluators for network performance as

well as domain-dependent criteria. The guided algorithm seeks to exploit the trade-offs

between the defined evaluation criteria by finding qualitatively-different plans.

The network-aware algorithm for the guided planning agent is described in detail in

Section 4.4.1.

4.1.4 Measuring Planners

Section 2.8 gives some background on measuring planners and the GQM approach [3].

Although it is difficult to compare planners that attempt to accomplish different goals, there

are some criteria on which planners can be measured. The following section classifies these

effectiveness and performance measures by the time (in the planning process) when they

are applicable.

This section describes characteristics of plans prior to their execution. It is further

divided into qualities that indicate the planning agent’s effectiveness and performance.

52

Planner Effectiveness

completeness Does the plan satisfy the goal barring unforeseen changes in the

environment?

cost/utility How close, in terms of a cost/utility function, is a plan relative

to other plans?

robustness Can the plan produced adapt to changing environmental condi-

tions?

size of plan How large, in bytes, is the final plan?

length of plan How many actions are in the plan?

domain-dependent

metrics

e.g. how many blocks (in blocks-world) are moved to complete

the plan?

Planner Performance

time How long, in CPU cycles (or seconds), did it take to generate

the plan?

memory consumed How much memory in bytes was used to generate the plan?

Discussion

The effectiveness of the planning agent is important during plan execution. A more ef-

fective planning agent gives better advice to the execution agent. A planner’s performance

is important in circumstances when the planning task is on-line. During on-line planning,

the world state can change while planning occurs, meaning a plan that was valid when plan-

ning began might be invalid at the end of the planning task. Planning performance becomes

even more important when the planning agent is running on a resource-constrained device.

53

4.2 Execution Agents

The execution agent is responsible for executing a set of actions on a system. Different

types of execution agents are defined formally in this section.

Following the notation introduced in Section 3.1, the purpose of an execution agent is to

accept a plan IE as input from a planning agent and invoke its services, respecting ordering

constraints. The policies for service invocation and error handling are defined by the type

of execution agent.

4.2.1 Naı̈ve Execution Agent

The naı̈ve execution agent receives a plan as input and executes its actions blindly. It

ignores errors that occur as a result of communication problems and failed action execution.

Table 4.1 shows the summary of the naı̈ve agent’s execution policies.

Policy Description
Service Invocation Invokes services exactly as described by pI . The naı̈ve agent

requires that ∀ actions a ∈ pI , host(a) 6= ∅∧resources(a) 6= {}.
Error Handling Ignores execution errors.

Table 4.1: Description of the Naı̈ve Execution Agent policies using the formalization de-
scribed in Section 3.1.

4.2.2 Reactive Execution Agent

The reactive execution agent, like the naı̈ve agent, receives a fully-ground plan as input.

The reactive agent, however, can react to action execution failures. Furthermore, if the

sensing action detects a fault in plan execution, the reactive agent has the opportunity to

isolate and correct the fault.

54

The method of reaction is based on the type of monitoring. A reactive execution agent

working with a synchronous monitor (i.e., analytical) adds its own sensing actions after

each action in the original plan. Thus, the reactive agent has some notion of plan execution

progress, and if a fault is detected, the agent knows which action(s) caused the fault.

A reactive execution agent working in conjunction with an asynchronous monitor (i.e.,

data-driven) receives fault information asynchronously. Therefore, the action(s) which

caused the fault is uncertain to the execution agent. For this reason, passing fault isola-

tion information to the execution agent is extremely useful for reacting to failures.

has more
actions?

yes

Start

Accept Plan

failed?no

yes

repaired?

yes

Failure

no

Execute Next
Action

Repair Plan

Success no

Figure 4.1: Flow chart of the reactive execution agent.

Table 4.2 shows the summary of the reactive agent’s execution policies and Figure 4.1

shows the flow chart of the reactive agent’s processing.

55

Policy Description
Service Invocation Invokes services exactly as described by pI . The reactive agent

requires that ∀ actions a ∈ pI , host(a) 6= ∅∧resources(a) 6= {}.
Error Handling Repairs the failed pI by replacing failed service call(s) with new

ones, creating p′I .
Table 4.2: Description of the Reactive Execution Agent policies using the formalization
described in Section 3.1.

4.2.3 Proactive Execution Agent

The proactive execution agent differs from the naı̈ve and reactive agents in that it does

not require fully-ground plans as input. Instead, the proactive agent accepts a list of actions

and it conducts reasoning to determine how best to allocate resources at execution time.

This method requires less-intensive planning, but incurs higher cost at execution time

because it conducts resource allocation logic. The proactive agent reacts to failures in

plan execution in the same way as the reactive execution agent, although fewer failures are

expected to occur due to proactive sensing prior to action execution.

Table 4.3 shows the summary of the proactive agent’s execution policies and Figure 4.2

shows the flow chart of the proactive agent’s processing.

Policy Description
Service Invocation Invokes services using network-aware logic to choose the host

and resources at execution time. The proactive execution agent
uses only service descriptions from actions a ∈ pI , meaning
∀a ∈ pI , host(a) = ∅ ∧ resources(a) = {}

Error Handling Repairs the failed pI by replacing failed service call(s) with new
ones, creating p′I .

Table 4.3: Description of the Proactive Execution Agent policies using the formalization
described in Section 3.1.

56

has more
actions?

yes

Start

Accept Unground
Plan

failed?no

yes

repaired?

yes

Failure

no

Ground First Plan
Action

Repair Plan

Success no

Execute Ground
Plan Action

Figure 4.2: Flow chart of the proactive execution agent.

4.2.4 Measuring Execution Agents

This section describes characteristics of execution agents. As in Section 4.1.4, it is

divided into qualities that indicate the agent’s effectiveness and performance.

57

Plan Execution Effectiveness

goal achievement Does the plan achieve the intended goal?

robustness Does the plan achieve the intended goal under changing envi-

ronmental conditions?

reactiveness Does the execution agent monitor/react-to dynamic environ-

ments? Does it detect action execution failure? Does it pre-

dict failures? Can it modify execution to avoid failures? Can it

modify execution to recover from failures without replanning?

Plan Execution Performance

time How long (in milliseconds) does it take to execute the plan,

including the time required to execute individual actions?

memory consumed How much memory (in bytes) does the execution agent use to

execute the plan?

4.3 Monitoring Agents

The monitoring agent is responsible for monitoring the progress and status of plan

execution. The monitoring agent performs fault detection and isolation, reporting its results

to the execution and/or planning agent(s). In this section several types of network-based

monitoring agents are described.

4.3.1 Analytical Monitoring Agent

The analytical monitoring agent is a synchronous monitor based on the model-free

observer method. It is synchronous in that the monitor is polled by an external agent. In this

method, an action is executed after observing sensor values. When the action completes,

another sensor reading is performed and the observed residual is compared to an estimate.

58

Analytical monitors are particularly useful to systems where actions have predictable

effects on a system. For example, after a crane’s grab action, we expect the crane to be

holding an item. If the crane’s arm is empty after executing a grab, then a fault occurred.

In the case of network-centric monitors, we expect actions to have certain effects on the

system’s network. An observer monitors the number of packets and bytes transmitted in

accordance with each action. A residual is calculated from an estimate based on the action

and its resources. Finally, fault-detection logic determines if the residual falls within the

expected range.

4.3.2 Data-driven Monitoring Agent

The data-driven monitoring agent is an asynchronous agent that conducts multivariate

statistical analysis to ensure that sensor data falls within the limits of a given model. It is

asynchronous in that the monitoring agent runs autonomously and informs external agents

of faults when they are detected. For this reason, data-driven monitors are useful for sys-

tems that operate according to a predictive model.

In my case, I use network factors that should remain relatively static under normal

operation such as PER, the number of retransmitted packets, socket timeouts, connection

resets, failed connections/datagrams, etc.

4.3.3 Knowledge-based Monitoring Agent

Knowledge-based monitoring agents use advanced reasoning techniques to observe

faults in the system. Expert systems and neural networks are two commonly used rea-

soning techniques in this approach.

In the case of distributed systems, the physical location of the nodes as well as the phys-

ical layer and data link layer communication systems have major impact on the quality of

the network. Therefore, geographical location and signal strength can serve as knowledge-

59

based fault indicators.

4.3.4 Measuring Monitoring Agents

For planning systems that interleave planning and execution, a combination of the cri-

teria from Section 4.1.4 and Section 4.2.4 are applicable.

Additionally, there are two types of monitors: passive and active. Passive monitors

have little or no effect on the system — the system operates the same with the monitor as

it would without the monitor. Active monitors, on the other hand, have some impact on the

system. An active monitor might cause the system to act differently than it would if the

monitor were not running. Therefore, another metric for monitoring agents considers the

effect(s) and impacts of the monitor on the running system.

Another metric for monitoring agents is their accuracy in fault detection. Accuracy for

FDI is measured by the number of false-positives (type I error) and false-negatives (type II

error). False-positives occur when a monitoring agent signals a fault that did not happen.

A false-negative is a fault that goes undetected by monitoring agents. A perfect monitoring

agent has no false-positives or false-negatives.

4.4 Network-Aware Agents

This section describes the network properties and reasoning that occurs in the network-

aware agents, including the planning, execution, and monitoring agents. First, I define the

notion of network-awareness in terms of the formalization introduced in Section 3.1. Then,

I compare the differences between network-awareness in each agent type.

In Definition 6, network-awareness is said to occur when changes to ωH cause an

agent’s output to change while all other inputs remain constant. In other words, if the

evaluations of the problem solutions do not vary over any different networking conditions,

then the agent reasoning is not network-aware.

60

The difference among the network reasoning techniques in each agent type is the time

in the plan execution process when the reasoning occurs. Figure 3.3 shows a sequence

diagram illustrating when network reasoning occurs in each agent.

4.4.1 Network-Aware Planning Agents

The guided planning agent is the only planner in the experiments that is network-aware.

It utilizes network-based plan evaluations and generates qualitatively-different plans over

those criteria.

Current work on generating qualitatively-different plans discusses two high-level tech-

niques: domain-independent, and domain-dependent. I use plan evaluation criteria to rep-

resent both techniques. The reasoning for using a single mechanism for both techniques is

that plan evaluators are sufficiently capable of recognizing domain-independent as well as

domain-dependent information about a plan. This topic is discussed further in the section

labeled “Plan Evaluation Criteria Statistics.”

My approach differs from previous approaches to generating qualitatively-different

plans in that it improves mixed-initiative planning by using a combination of domain-

dependent and domain-independent plan evaluations. Furthermore, I generate plans with

qualitative differences based on the tradeoffs in the multi-objective evaluation criteria.

The idea for biasing the planner is to identify qualitatively-different plans using plan

evaluation criteria. A plan evaluator contains the following:

• a complete/fully-ground plan evaluation function, EVALPLAN(Plan);

• a potentially non-ground partial plan evaluation function,

EVALPARTIALPLAN(PartialP lan); and

• evaluation criterion statistics.

My method for biasing the planner’s search strategy based on plan evaluations is to

maintain a set of priority queues, L = {Q0, Q1, . . . , Q|L|}— one for each plan evaluator.

61

Every time a new partial-plan/backtrack-point is generated, its viability is assessed and it

is inserted into each priority queue according to the partial plan evaluation of the priority

queue’s plan evaluator. Psuedocode is found in Algorithm 2.

Algorithm 2 HANDLEPARTIALPLAN(p)

Require: p is the partial plan accepted as input. E is the set of plan evaluators. L is a list of priority queues containing plan evaluations.
Ensure: EVALPARTIALPLAN(evaluator, p) is a function that evaluates partial plan, p, using the partial plan evaluator, evaluator.

INSERT(Q, e, p) is a function that inserts a partial plan, p, into the priority queue, Q, according to the evaluation, e.
1: for all evaluator ∈ E do
2: Q← L[evaluator]
3: e← EVALPARTIALPLAN(evaluator, p)
4: INSERT(Q, e, p)
5: end for

This method does not require a user to define “tiers” of the plan evaluations (e.g. ex-

pensive, cheap, fast, slow) as is necessary in domain metatheory. It does, however, assume

that there exists a plan evaluator for all plan criteria that are important to an end-user.

The planner uses the greedy strategy discussed in [63] to generate multiple plans. The

planner iterates over the plan evaluators for each plan it generates. Thus, every new plan

represents an alternative from the head of a different evaluator queue.

Myers’s concept of domain metatheory [46] is rooted in discrete evaluation ranges.

In Myers’s example, transportation methods are distinguished by affordability and time-

efficiency (among others). The feature, affordability takes the values “extravagant, expen-

sive, moderate, inexpensive, or cheap” defined as categories of features. Time-efficiency is

similarly broken into discrete categories.

By eliminating the predefined categorizations of the evaluations, this allows for a higher

level of granularity in evaluating partial plans. Using partial plan evaluators as a basis for

guiding the planner’s search strategy has a greater expressivity than domain metatheory.

Domain metatheoretic values can be expressed as partial plan evaluators, but complex in-

teractions of actions and resources are more accurately modeled as partial plan evaluators.

62

For example, filling a ground vehicle with expensive high-octane fuel results in wasted

money. Where domain metatheory might explore this option because the plan offers sig-

nificantly different features, plan evaluation guides the planner away from this result.

4.4.2 Network-Aware Execution Agents

Where network-aware planners reason about network properties at plan-time, the network-

aware execution agents conduct reasoning at execution-time. The reactive and proactive ex-

ecution agents exhibit network-awareness. They do so by reasoning about the current net-

work topology at different points in their execution process. The main difference between

the reactive and proactive execution agents is that the reactive only utilizes network rea-

soning when a failure occurs during plan execution whereas the proactive execution agent

checks the current state of the network prior to every action execution. These algorithms

are contrasted to the naı̈ve execution agent, which does not exhibit network-awareness.

The “Repair Plan” and “Ground First Plan Action” logic from the reactive and proactive

execution agents (see Figure 4.1 and Figure 4.2) are the network-aware portions of execu-

tion. In my implementation, these execution blocks are identical in that they both accept an

action and decide how to best accomplish it given the current network state. The difference

is that the proactive agent is given plans where ∀a ∈ IEhost(a) = ∅ ∧ resources(a) = {}.

The logic for the network-awareness attempts to satisfy the action’s causal link to the

goal adding as few actions as possible. Furthermore, the network-awareness logic in the

reactive and proactive agents gives preference to plans using hosts with the greatest ωH .

My implementation of the execution agents maintains a model of the planning domain

in memory, updating the world state as plan execution occurs. When a network-aware

execution block is reached, the execution agent consults the routing protocol to determine

ωH and chooses from a list of repair methods.

63

4.4.3 Network-Aware Monitoring Agents

Adding network-awareness to monitoring agents could have two very different mean-

ings. One interpretation monitors plan execution using domain-specific criteria with as little

network impact as possible. My interpretation monitors network properties to find failures

in plan execution. I do, however, investigate each monitoring agent’s network impact in its

performance analysis.

Figure 4.3 shows the interaction between the execution agent and analytic monitor-

ing agents. The analytic execution agent injects monitoring actions into the plan be-

tween each action. Given the ordered plan IE = {a0, a1, . . . , a|IE |}, it constructs IM =

{m0,m1, . . . ,m|IE |+1}, an ordered set of monitoring actions. Next, it creates the new exe-

cution plan I ′E with Equation 4.1. The result is I ′E = {m0, a0,m1, a1, . . . ,m|IE |, a|IE |,m|IE |+1}.

I ′E =
n⋃

i=0

{mi, ai} (4.1)

A monitoring action probes each of the monitoring agents to trigger residual calculation

on the number of packets transmitted. Fault detection logic is conducted in the execution

agent based on the residuals from each monitoring agent. The number of transmitted pack-

ets was chosen as the network property for the analytic agent because a model (of ideal

execution) could easily be constructed for each plan action.

The data-driven monitor has a much simpler implementation. Each monitor performs

autonomous fault detection and only reports faults to the execution agent if they occur.

Figure 4.4 illustrates the data-driven monitoring approach. The network properties used

by the multivariate data-driven monitoring agents were the number of packets sent and the

number of retransmission timeouts. These properties were chosen because initial modeling

showed that disconnections caused retransmission timeouts to increase while the number

of packets sent remained constant. A graph from the initial modeling effort appears in

Figure 4.5.

64

Execution Agent Monitoring Agent 1
Starting Action

Action
Execution

Ending Action

...

Monitoring Agent 1
Residual

Monitoring Agent n

...

...

Monitoring Agent n
Residual

Fault
Detection

Figure 4.3: Sequence diagram showing the interaction between the execution agent and
analytic monitoring agent(s).

4.5 Network-Centric Extensions to the Planning Problem

The challenge in creating network-centric planning extensions is finding a reusable and

effective method for incorporating communication properties into the scenario model and

planning problem. It is important that this is done properly because a poor representation

can cause the planner’s search space to increase dramatically. There are two basic ways to

model service distribution: The first method, labeled operator distribution, represents each

service on a node with a different planning action. With this method, actions take the form

NODE1ACTION(parameter). The operator distribution process can be implemented using

65

Execution Agent

Data-driven
Monitoring Agent 1

Data-driven
Monitoring Agent 2

Data-driven
Monitoring Agent n...

Faults

Figure 4.4: Flow diagram showing the interaction between the execution agent and data-
driven monitoring agent(s).

the procedure in Algorithm 3.

Algorithm 3 Operator Distribution
Require: A′ is the set of all plan actions with network-centric extensions. N is the set of network-nodes. an is the service represented

by action, a, executing on network-node, n.
Ensure: NODEOFFERSSERVICE(n, a) is a function that returns TRUE if node, n, offers the service represented by a.

1: A′ ← {∅}
2: for all a ∈ A do
3: for all n ∈ N do
4: if NODEOFFERSSERVICE(n, a) then
5: A′ ← A′ ∪ {an}
6: end if
7: end for
8: end for

The second, labeled resource distribution uses a parameter of the planning action to

represent the node on which the service executes. With this method, actions take the form

ACTION(node, parameter).

Resource distribution involves an extension to the planning problem for the planner to

reason over distributed environments: P(Σ, s0, Sg)→ P ′(Σ′, s′0, Sg) following the notation

66

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70

(S
ee

 le
ge

nd
 fo

r
un

its
)

Elapsed Time (sec)

Network Statistics During Host Disconnection

Packets Sent
Data Packets

Retransmitted Data Packets
Received Packets

TCP ACKs
Duplicate TCP ACKs

Completely Duplicate Packets
Old Duplicate Packets

Window Update Packets
Segments Updated RTT

Retransmission Timeouts

Figure 4.5: Graph illustrating the network criteria tested during the disconnection modeling
process for the data-driven monitoring agent. A disconnection occurred roughly at the
point on the graph where retransmission timeouts increases sharply.

introduced in Section 2.1.

The actions are modified to include service mapping constraints:

A′ ← {∀a ∈ A, a′ = ((precond(a) ∪ offers(a)), effects−(a), effects+(a))}

These modifications depend on the world-state to contain constraints for network-node

types and the services running on each network-node. The network-node type additions to

the world-state, s0 → s′0, are made as shown in Algorithm 4. Further additions to the world-

67

state are made to map services to network-nodes. The process is shown in Algorithm 5.

Algorithm 4 Resource Distribution — network-node type extensions
Require: s0 is the initial state of P . s′

0 is s0 with network-node type extensions. N is the set of network nodes.
Ensure: NETWORKNODE is the type defined for network node variables in Σ. TYPE is the typing function for plan variables.

1: s′
0 ← s0

2: for all n ∈ N do
3: s′

0 ← s′
0 ∪ {TYPE(n) = NETWORKNODE}

4: end for

Algorithm 5 Resource Distribution — network-node service mappings
Require: s0 is the initial state of P . s′

0 is s0 with network-node service mappings. S is the set of services on the network.
Ensure: NETWORKNODESOFFERING(s) is a function that returns the set of network nodes that offer service, s.

1: s′
0 ← s0

2: for all s ∈ S do
3: for all n ∈ NETWORKNODESOFFERING(s) do
4: s′

0 ← s′
0 ∪ {s(n) = TRUE}

5: end for
6: end for

Complexity

Both methods increase the size of the planning search space. Operator distribution adds

to the number of actions that can be inserted into a plan. If there are n nodes and each

can execute m unique services, then operator distribution increases the number of actions

from n in the original domain to n×m in the worst-case of the distributed service domain.

In operator distribution, service availability changes require modifications to the planning

domain, whereas resource distribution only modifies the world-state.

Resource distribution keeps the number of actions constant between the original do-

main and distributed service domain, but increases the difficulty of unification when the

planner is searching for applicable actions. Furthermore, it often postpones the grounding

68

of planning variables until later in the search, which makes it more difficult to calculate

role-based heuristics when guiding the planner through the search-space.

4.5.1 Plan Evaluation Criteria Statistics

Alone, plan evaluators as defined here, can distinguish only relative distances between

plans. By adding a concept of plan evaluation criteria statistics to plan evaluators, plans

can be positioned along an absolute continuum of evaluation values. The aspects of plan

evaluation criteria statistics are

• range (effective and theoretic),

• direction (minimize or maximize), and

• statistics (e.g. mean, median, mode, standard deviation).

Plan evaluation statistics specify a theoretic range and monitor the effective range of

plan evaluation values. By specifying and tracking the evaluation statistics in this manner,

domain metatheory can be implemented within plan evaluators using the theoretic values.

For instance, if the theoretic cost of traveling from Philadelphia, PA, USA to Edinburgh,

Scotland is [$1:$9999], then three ranges could be evenly divided as:

• Cheap [$1:$3333],

• Moderate [$3334:$6666], and

• Expensive [$6667:$9999].

Another possibility is to dynamically create metatheoretic categories based on the plan

evaluations’ effective statistics. Following the Philadelphia to Edinburgh travel example,

the planner finds flights for $7000, $8000, and $9000, which it labels respectively cheap,

moderate, and expensive. When it finds a $5000 flight later, it reassesses the ranges. With

this method, the risk is misrepresenting the full range of possibilities, but the categoriza-

tions are more realistic.

69

As discussed in Section 4.4.1, domain metatheory features are rooted in discrete evalua-

tion values. It is implied that the final task assigning agent understand what certain qualities

of evaluation criteria are desired. For example, the task assigner must know what level of

affordability the user seeks.

The notion of plan evaluators requires that the user specify one evaluator for each con-

cern in the plan. An analogous plan evaluator for the “affordability” feature would be

a “monetary cost” plan evaluator which seeks to minimize the overall cost. By specifying

the aim to minimize the monetary cost of a plan, we are able to eliminate strictly dominated

plans, discussed in Section 2.4.3 and 4.5.2.

4.5.2 Plan Evaluation Visualization

While a task assigning agent might be interested in any number of plan evaluators, the

plans whose evaluations dominate other plans in every criteria should be considered. The

plan evaluation visualization user interface (viewed by the task assigner) makes a distinc-

tion between dominant plans and their dominated counterparts. Dominant plans are defined

by Algorithm 6.

Algorithm 6 TEST-PLAN-FOR-DOMINANCE(p,Γ)

Require: Γ is the set of plan evaluation criteria on which to test plan, p, for dominance (modified to seek minimization if necessary).
Ψ is the set of all plans (other than the plan being tested, p).

Ensure: Applying a plan to a plan evaluator yields a quantitative evaluation.
1: for all plan ∈ Ψ do
2: for all e ∈ Γ do
3: return (e(plan) ≥ e(p))
4: end for
5: end for

The plan evaluation user interface offers visualization of current evaluation values and

each plan evaluator’s statistics. The visualization’s purpose is to help the task assigning

agent to quickly and efficiently understand the options explored by the automated planner

70

Figure 4.6: A screen capture of the modified I-Plan Option Tool displaying plan evaluation
comparisons and statistics. The top-right panel is the option comparison matrix which
displays textual information about each of the plan options. The bottom-right panel is the
option statistics visualization which shows the theoretic ranges and direction of the plan
evaluators as well as current statistics for each plan evaluator. The bottom-left panel is the
option comparison graph which shows the effective ranges of the plan evaluators and plots
the dominant and dominated plans along these ranges.

in respect to their evaluations. Figure 4.6 shows a screen capture of the tool used to display

plan evaluation visualizations.

71

5. Experiments

There were two groups of experiments created for empirical evaluations. One group

determines if my method of incorporating network-awareness into an automated planner

yields better results according to plan evaluation criteria. The other quantitatively compares

each combination of agent implementation to determine the effects of network-awareness

on simulated plan execution.

5.1 Plan Evaluation Benchmarking

The purpose of this experiment is to determine if my method of incorporating network-

awareness into an automated planner yields better plan evaluation criteria in a network-

centric environment. Figure 5.1 shows the network-centric environment used in the exper-

iment.

Some services are offered by every node in the experiment, these include:

• PHYSICALMOVE;

• ACQUIRECAMERA;

• TAKEPHOTO;

• GETOLDPHOTO; and

• RELEASECAMERA.

Other services are only offered by a few nodes, the remaining services and the nodes that

offer are represented in Table 5.1. The resources in the plan evaluation benchmarking

experiment exhibit the properties in Table 5.2 and Table 5.3.

See Figures 5.2, 5.3, 5.4, and 5.5 for frequency distributions of plan evaluations of the

first forty plans generated by each search strategy: Guided, I-Plan’s default, and Random.

72

Action Providing Hosts
CHECKFORIEDAT 1, 2, and 5
MANUALSEARCH 1, 2, 3, and 4
PHOTOGRAPHICSEARCH 3, 4, and 5
PHOTOARCHIVE 5
PHOTOCOMPARE 4 and 5
RESULTREPORT 2 and 5

Table 5.1: Actions provided by the hosts in the plan evaluation benchmarking experiment.

Camera Resolution
Camera 1 3.2
Camera 2 8.0

Table 5.2: Camera properties as resources in the plan evaluation benchmarking experiment.

Node Speed (max mph) Transportation Cost (per mile)
Node 1 30 6.0
Node 2 40 6.5
Node 3 20 5.1
Node 4 10 4.9
Node 5 45 6.2

Table 5.3: Network node properties as resources in the plan evaluation benchmarking ex-
periment.

73

Location 1

Location 4

Location 3

Location 2

Camera 1

Node 1

Node 2

Node 3

Node 4

Node 5

Camera 2

Figure 5.1: Geographical map of the topology of locations, resources, and a network over-
lay.

As seen in the figures, guiding the search strategy using partial-plan evaluators yielded a

greater variety of full-plan evaluations than the random and I-Plan search strategies. For

these plan evaluators, the guided search evaluations had comparable or higher standard

deviations than both the Random and I-Plan search strategies (see Table 5.4). Network

hops served as a link quality evaluator for these experiments.

The first part of the experiments focused on the Guided algorithm’s ability to produce

qualitatively-different plans. Another desired quality for search algorithms is the ability to

produce dominant plans in respect to evaluation criteria. As with the first set of experi-

ments, I used the following plan evaluation criteria:

• Number of Network Hops (full data path),

74

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9

F
re

qu
en

cy

Number of Hops

I-Plan
Random
Guided

Figure 5.2: Network hop evaluation frequency distribution.

• Network Bandwidth Usage (Mbps),

• IED Detection Accuracy (%), and

• Plan Execution Time.

For the Dominant Plan experiment, I generated forty plans using each planning strat-

egy, keeping track of the dominant plans among all strategies. The purpose of this experi-

ment is to show that, while the Guided algorithm can produce qualitatively-different plans,

it can also generate dominant plans. In the experiment, 59.3% of unique dominant plans

were generated by the Guided algorithm. See Table 5.5 for the results of the Dominant Plan

experiment.

75

 0

 5

 10

 15

 20

 25

 30

 3 4 5 6 7 8 9

F
re

qu
en

cy

Bandwidth (Kb)

I-Plan
Random
Guided

Figure 5.3: Network bandwidth evaluation frequency distribution.

By specifying plan evaluation criteria statistics for each plan evaluator, the notion of

dominant plans is exploited. A limited set of dominant plans are presented to the task

assigning agent for careful consideration since these are likely to be the best plan options.

The purpose of the empirical validation is to show that guiding the planner’s search us-

ing multi-objective partial-plan heuristics results in a broad range of (full) plan evaluations.

The distinction is between the partial plan evaluations which are guidance heuristics and

full plan evaluations which run on fully-ground, complete plans. The standard deviations

of each plan evaluation (over the set of plans produced by the planner in its allotted time)

in Table 5.4 show that the guided algorithm produced a broad range of plan evaluations.

76

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

F
re

qu
en

cy

IED Detection Accuracy (%)

I-Plan
Random
Guided

Figure 5.4: IED detection accuracy evaluation frequency distribution.

The percentage of dominant plans produced by each algorithm in Table 5.5 serves as a

comparison of algorithm effectiveness.

77

 0

 5

 10

 15

 20

 25

 30

 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

F
re

qu
en

cy

Execution Time (min)

I-Plan
Random
Guided

Figure 5.5: Execution time evaluation frequency distribution.

Network Hops Bandwidth (Kb) IED Acc. (%) Exec Time (sec)
I-Plan Default 0.949 0.759 29.1 0.730
Random 1.647 1.476 17.8 0.642
Guided 1.916 1.141 39.3 1.249

Table 5.4: Standard deviations of plan evaluations for each search strategy show that my
Guided search strategy yields the most qualitatively-different plans in the “Search Guidance
Using Plan Evaluation Criteria” experiment.

Search Strategy % Dominant Plans Produced
Guided 59.3%
I-Plan Default 7.4%
Random 33.3%

Table 5.5: The percentage of dominant plans produced by each search strategy in the “Dom-
inant Plans” experiment.

78

5.2 Network-Aware Agent Combinations

The goal of these experiments is to show which combinations of agent implementations

yield the best plan execution. To accomplish this, I ran all combinations of planning, ex-

ecution, and monitoring agents through the IED detection scenario in a network emulator.

The types of agents and their techniques are listed below:

Agent Technique

Planning Random

(I-Plan) Domain-independent

Guided

Execution Naı̈ve

Reactive

Proactive (Sensing)

Monitoring Data-driven

Analytical

(none)
My evaluation of plan execution includes goal satisfaction, execution time, network

bandwidth usage, and IED detection accuracy.

5.2.1 Experiment Setup

This section describes the implementation of the agents and the network emulator in

which the experiments were run.

CORE

All of the experiments in this section were executed in the Naval Research Laboratory’s

Common Open Research Emulator (CORE) [1]. CORE is a framework for emulating net-

works on a single computer. Using FreeBSD network stack virtualization, CORE allows

79

for heterogeneous networks to be emulated. Furthermore, the mobility of hosts in CORE

can be controlled using scenario mobility scripting. Using these features, a large emulation

scenario can be deployed and controlled by a single GUI.

All of the core hosts are running Simple Multicast Forwarding (SMF) [39] for multicast

packet forwarding and Open Shortest Path First (OSPF) as a unicast routing protocol.1

Figure 5.6 shows a screenshot of the CORE nodes configured to run the IED detection

scenario.

CORE supports loading “mobility models,” which dictate the geographical movement

of hosts while CORE is running. I implemented three mobility models to show how differ-

ent types of network dynamism affect plan execution and monitoring. All scenarios started

with the hosts positioned as shown in Figure 5.6.

The first mobility model, static, had no host movement. The nodes all remained in the

positions shown in Figure 5.6. The second, dynamic, moved the hosts as dictated by the

PHYSICALMOVE and PHYSICALMOVETOCAMERA actions. The last, partition/merge or

part-merge, split the network into two “islands” (as shown in Figure 5.7) and merged the

network back together. This mobility model caused a complete disconnect between the two

islands.

Experimental Process

All planning agents presented in this thesis were implemented using Tate et al. ’s plan-

space HTN planner, I-Plan [11]. For descriptions of the implementations, see Chapter 4.

After the domain and each of the agent types were implemented, each of the planning

agents produced plans for five minutes. From these plans, a MOO function is used to select

a single plan from each of the set produced.

The plans are passed to execution agents running in CORE. Other hosts in core are

1More information on OSPF at http://www.ietf.org/html.charters/ospf-charter.
html.

80

Figure 5.6: Screenshot of the IED detection scenario running in the network emulator,
CORE. The blue circles are hosts in CORE and the green lines represent network links.
The white rectangles in the background of CORE are used to show the starting locations of
the hosts for the IED detection scenario.

running the services that correspond to the plan actions. All hosts that house services

also run monitoring agents (unless no monitoring agents are specified by the test). The

monitoring agents report faults they detect to the execution agent.

Experimental Trials

Each experimental run, or trial, was differentiated by:

• The implementation of the planning agent used;

81

Figure 5.7: Screenshot of the partition/merge mobility model running in CORE. The blue
circles are the CORE hosts, the white rectangles show the starting positions.

• The implementation of the execution agent used;

• The implementation of the monitoring agents used; and

• The type of network dynamism under which the agents operated.

Because CORE uses FreeBSD network stack emulation, different results were experienced

on each run — even when all the above variables were constant. Performance and effective-

ness of the trials was judged based on the actions that completed successfully. For example,

manually searching all of the locations yields a 90% IED detection accuracy. However, if

one manual search does not complete, the IED detection accuracy decreases. Similarly, the

82

execution time depends on the actions executed, the order in which they are executed, and

the resources that they utilize. Additionally, during each of the trials, all of the network

traffic was logged to determine the network overhead associated with each unique run.

5.2.2 Planning Agent Comparisons

The first part of the experiment is finding the set of plans that each algorithm produces.

The planning agents were allotted five minutes to produce all the plans they could.

Next, a single plan for each algorithm is selected from each set via the MOO function

in Equation 5.2.2.1. This function represents the intentions of a human user at the mixed-

initiative plan selection interface.

MOO(pI) =IEDDetectAcc(pI)

+ 3× TranspCost(pI)

+ 5× ExecTime(pI)

+ HopCount(pI)

+ BandwidthUse(pI) (5.2.2.1)

Results

The domain-independent planning algorithm. I-Plan’s default algorithm uses domain-

independent metrics, preferring plans with fewer actions, using fewer resources. Since my

method of modeling service distribution represents network nodes as resources, I-Plan’s

default algorithm favored plans using services on nodes that offered many services, not nec-

essarily the network nodes in the best locations. Also, since manual IED searches require

fewer planning actions, the domain-independent heuristics preferred them to photographic

searches. An example of a plan generated by the domain-independent search is represented

83

below.2 Note the manualSearch action being preferred to photograhic search and only

node1 and node2 being used. Manual searching is preferable to the domain-independent

algorithm because it requires fewer planning actions. Only two network nodes are used for

the manual searching because the domain-independent algorithm prefers plans that utilize

fewer resources.

checkForIEDAt location1
manualSearch node1 location1
physicalMove node1 location1
conductScan node1 location1
physicalMove node2 location1
reportResults node2 location1
checkForIEDAt location2
manualSearch node1 location2
physicalMove node1 location2
conductScan node1 location2
physicalMove node2 location2
reportResults node2 location2
checkForIEDAt location3
manualSearch node1 location3
physicalMove node1 location3
conductScan node1 location3
physicalMove node2 location3
reportResults node2 location3

The random planning algorithm. The random planning algorithm selects from branches

of the search space randomly. The algorithm exhibits no preference toward any plan criteria

— including actions and resources. After running the algorithm for five minutes, it pro-

duced over 100 plans. The plan that returned the highest MOO value (see Equation 5.2.2.1)

is shown below.

None of the plans produced by the random algorithm contained “pointless” actions. I

define pointless actions as those whose effects do not contribute to a goal state. The random

2The order of the plan actions appears modified for clarity.

84

algorithm avoided pointless actions because plan-space planners eliminate actions with no

causal links to a goal state.

Although the random algorithm avoided pointless actions, it suffered from an inefficient

use of resources. This inefficiency causes nodes to travel further and communicate over

lower-quality network links. Furthermore, the overall IED detection accuracy suffers as a

result of poor camera choice.

checkForIEDAt location1
photographicSearch node3 location1
physicalMoveToCamera node3 camera1
acquireCamera node3 location1 camera1
physicalMove node3 location1
getOldPhoto node5 to photo-0
takePhoto node3 location1 camera1 to photo-1
comparePhotos node4 photo-1 photo-0
reportResults node2 location1
checkForIEDAt location2
manualSearch node1 location2
physicalMove node1 location2
conductScan node1 location2
physicalMove node2 location2
reportResults node2 location2
checkForIEDAt location3
manualSearch node1 location3
physicalMove node1 location3
conductScan node1 location3
physicalMove node2 location3
reportResults node2 location3

The network-aware guided algorithm. The guided algorithm uses domain-dependent

and network-aware plan evaluation criteria to serve as search heuristics. Plans produced by

this algorithm reason over planning actions as well as the resources they use.

Of the plans produced by this algorithm in five minutes, the below had the highest

MOO value (from Equation 5.2.2.1). The plan uses a combination of manual searching

and photographic searching to balance the tradeoff between IED detection accuracy and

85

execution time.

checkForIEDAt location1
photographicSearch node5 location1
physicalMoveToCamera node5 camera2
acquireCamera node5 location1 camera2
physicalMove node5 location1
getOldPhoto node5 to photo-0
takePhoto node5 location1 camera2 to photo-1
comparePhotos node5 photo-1 photo-0
reportResults node5 location1
checkForIEDAt location2
manualSearch node3 location2
physicalMove node3 location2
conductScan node3 location2
physicalMove node5 location2
reportResults node5 location2
checkForIEDAt location3
manualSearch node4 location3
physicalMove node4 location3
conductScan node4 location3
physicalMove node2 location3
reportResults node2 location3

Figure 5.8 shows the average of actual execution times of each of the aforementioned

plans using naı̈ve and reactive execution agents and analytical and data-driven monitoring

agents. For this baseline test, all the agents were running on a single host, so the network

was not affecting the execution times. The test showed that all plans take longer to execute

with the reactive execution agent and the analytic monitoring agent. This is expected be-

cause when using analytic monitoring, the reactive execution agent inserts monitoring plan

actions into the plan. On average, the guided algorithm produced the fastest plan, followed

closely by the domain-independent (I-Plan) plan and then random. The exception to this

ordering is that the guided plan, monitored by the analytic monitor, has more actions and

therefore requires more monitoring plan actions to be inserted — increasing the overall

execution time slightly.

86

 0

 2

 4

 6

 8

 10

Naive Reactive
(analytic)

Reactive
(data-driven)

E
xe

cu
tio

n
T

im
e

(m
in

)

Execution Agent

Planning Agent
I-Plan

Random
Guided

Figure 5.8: Mean plan execution times (in minutes) by plan, execution agent, and monitor-
ing agent types. All agents and services are located on a single host so the network is not
affecting the results.

Figure 5.9 illustrates the IED detection accuracy for each plan. The figure shows the

IED detection accuracy of each plan assuming it executes to completion with no errors.

The domain-independent algorithm (I-Plan) produced a plan with the highest IED detection

accuracy, followed by the guided, and finally the random. These results are not surprising

because manual searching yields a higher IED detection accuracy (but takes a longer time)

than visual change detection. The guided algorithm attempts to exploit a tradeoff between

these criteria so it makes sense to lie between the domain-independent and the random

algorithms.

87

 0

 20

 40

 60

 80

 100

I-Plan Random Guided

IE
D

 D
et

ec
tio

n
A

cc
ur

ac
y

(%
)

Planning Agent

Figure 5.9: IED detection accuracy for each plan. This shows the IED detection accuracy
of each plan assuming it executes to completion with no errors.

The proactive execution agent was not used for any of these experiments because all

the agents and services were running on the same host. The proactive agent relies on dif-

ferences in networking conditions to conduct network reasoning, and since all networking

conditions are equal, the proactive agent’s service choices are meaningless.

Figure 5.10 shows the average plan execution time for plans that executed successfully

to completion by planning agent and network dynamism. Static mobility exhibits the least

network dynamism, dynamic has varying link weights but never completely partitions the

network, and partition-merge (part-merge) separates the network into two islands and then

88

merges the islands. The IED detection accuracy for each planning agent is not shown

because it matches those under ideal conditions in Figure 5.9. Figure 5.10 indicates that

dynamic link weights do not greatly affect the plan execution, but full network disruptions

(such as those in the partition/merge mobility scenario) have an adverse effect on execu-

tion time. Furthermore, in the cases of static and dynamic mobility, the (network-aware)

guided planning agent performed comparably to the domain-independent (I-Plan) and ran-

dom planning agents. In the partition/merge scenario, however, it performed 16.7% faster

than the next fastest (the domain-independent) planning agent and 28.8% faster than the

random planning agent.

5.2.3 Execution Agent Comparisons

To compare execution agents, the plans from Section 5.2.2 are executed in CORE using

each of the execution agents in various network environments.

Figure 5.11, Figure 5.12, and Figure 5.13 show the mean IED detection accuracy ver-

sus the mean plan execution time for each execution agent, separated by the domain-

independent (I-Plan), random, and guided planning agents respectively. In all of these

figures, the naı̈ve execution agent has the lowest IED detection accuracy and plan execu-

tion time. This is because many of the plans executed by the naı̈ve agent failed before

completing. Also, in all experiments, the reactive and proactive agents achieved the same

level of IED detection accuracy (equal to the ideal values). The only factor in their com-

parative performance was plan execution time.

Figure 5.11 shows the domain-independent planning agent working with each of the

execution agents. The reactive execution agent completed slightly faster on average than

the proactive agent, however both achieved their ideal IED detection accuracy values. The

naı̈ve execution agent, on the other hand, did not complete successfully — yielding a very

fast execution time at the expense of a sub-optimal IED detection accuracy.

89

 0

 2

 4

 6

 8

 10

I-Plan Random Guided

E
xe

cu
tio

n
T

im
e

(m
in

)

Planning Agent

Network Dynamism
Static

Dynamic
Part-Merge

Figure 5.10: Mean plan execution time for plans that executed successfully to comple-
tion by planning agent and the network dynamism (as indicated by the mobility scenario).
Static mobility exhibits the least network dynamism, dynamic has varying link weights but
never completely partitions the network, and partition-merge (part-merge) separates the
network into two islands and then merges the islands.

Figure 5.12 shows the random planning agent working with each of the execution

agents. Again, the naı̈ve execution agent did not complete successfully, yielding a fast

execution time at the expense of a sub-optimal IED detection accuracy. For the random

planning agent, however, the proactive execution agent was considerably faster on average

than the reactive execution agent. This is probably because the random planning agent did

not consider the network conditions at any point of the plan construction, so the reactive

execution agent experienced faults for many of the plan’s actions. The proactive did not

90

experience as many faults because it uses network-based logic before each plan action has

an opportunity to fail.

Figure 5.13 shows the guided (network-aware) planning agent working with each of the

execution agents. Using the guided planning agent with the naı̈ve execution agent finished

faster and with a higher IED detection accuracy on average than the domain-independent

or random planning agents with the naı̈ve execution agent. Also, the reactive and proactive

execution agents completed faster using the guided planning agent than any other planning

agent. This supports my results from the planning agent comparison.

Another important factor in Figure 5.13 is that the reactive agent completes consider-

ably faster than the proactive agent. This means that the advice of the guided algorithm

significantly helped the execution agent.

One factor to consider for the effectiveness of an execution agent is the impact on the

network. An execution agent that uses fewer network resources is preferable so the network

resources remain available for other applications. Figure 5.14 shows the average number of

packets transmitted over the entire network by execution agent and network dynamism. The

results show that the naı̈ve and reactive execution agents behave similarly under connected

mobility patterns (static and dynamic). The proactive agent uses slightly more network

transmissions on average under connected mobility patterns, probably from the routing

protocol conducting unnecessary network probes prior to every action. The naı̈ve execution

agent is not shown on the partition/merge scenario because none of the plans it executed

in this environment completed successfully. The proactive agent, under partition/merge,

sent fewer than half as many packets as the reactive agent. This is probably because of

the partial transmissions that fail when the reactive agent attempts to act according to the

fully-ground plan. The proactive agent avoids these unnecessary transmissions by updating

its view of ωH before each action execution.

91

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

P
la

n
ex

ec
ut

io
n

tim
e

(m
in

)

IED detection accuracy (%)

Naive

Reactive

Proactive

Figure 5.11: Mean IED detection accuracy versus mean plan execution time of the domain-
independent planning agent in combination with each execution agent.

5.2.4 Monitoring Agent Comparisons

The analytic monitoring agents triggered a lot of false positives when there were er-

rors in communicating (for computing the residual) between the monitoring agents. Also,

the analytic monitor was an active monitor, one that has an (possibly detrimental) effect

on the system, while the data-driven monitor is passive, having no effect on the system.

Furthermore, implementing the distributed residual calculation was more challenging than

implementing the data-driven monitor. Thus, analytic monitors are less suitable in dis-

tributed environments than data-driven monitors.

92

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

P
la

n
ex

ec
ut

io
n

tim
e

(m
in

)

IED detection accuracy (%)

Naive

Reactive

Proactive

Figure 5.12: Mean IED detection accuracy versus mean plan execution time of the random
planning agent in combination with each execution agent.

The data-driven monitors, on the other hand, were useful as indications of network-

related plan execution failures. Figure 5.15 shows the execution of a plan that encountered

no failures, whereas Figure 5.16 shows the number of retransmitted packets increases while

the number of successful outgoing packets remains constant (or near-constant).

Over 54 trials, the data-driven network monitoring agents experienced only a 9.25%

false-positive (type I error) rate and a 1.85% false-negative (type II error) rate. False-

positives occur more often (five times as frequently) because only one of the monitoring

agents has to malfunction for a false-positive to register. For a false-negative to register, a

93

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

P
la

n
ex

ec
ut

io
n

tim
e

(m
in

)

IED detection accuracy (%)

Naive

Reactive

Proactive

Figure 5.13: Mean IED detection accuracy versus mean plan execution time of the guided
planning agent in combination with each execution agent.

network malfunction must go undetected by all of the monitoring agents.

5.3 Experimental Analysis

The goal of the experiments is to validate the following contributions:

• A novel method of generating qualitatively-different plans over a range of plan eval-

uators; and

• A comparison of the efficiency and performance of network-aware planning, execu-

tion, and monitoring agents.

94

 0

 20

 40

 60

 80

 100

 120

 140

Naive Reactive Proactive

T
ot

al
 n

um
be

r
of

 p
ac

ke
ts

 tr
an

sf
er

re
d

Execution Agent

Network Dynamism
Static

Dynamic
Part-Merge

Figure 5.14: Average number of packets transmitted across the entire network for various
execution agents under different network dynamics. The naı̈ve execution agent never
successfully completed executing a plan in the partition/merge mobility scenario, so it is
not included in this figure.

To do so, I show that network awareness in planning, execution, and monitoring agents

increased the performance and effectiveness of the agents. The former contribution is vali-

dated by showing that network-aware modifications to the planning agent cause it to return

a greater diversity of plans and the network-aware plans have higher evaluations on average

than those produced by other planning agents. Next, with the help of a network emulator, I

show that network-aware plans perform better than their network-unaware peers when exe-

cuted under network dynamism, in order to validate the later contribution. All experiments

95

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250
 0

 1

 2

 3

 4

 5

 6

 7

T
ot

al
 n

um
be

r
of

 d
at

a
pa

ck
et

s
pr

oc
es

se
d

T
ot

al
 n

um
be

r
of

 T
C

P
 r

et
ra

ns
m

it
tim

eo
ut

s

Elapsed Time (sec)

Data-driven Monitoring Agent During Dynamic Link Mobility

Number of data packets
TCP Retransmit Timeouts

Figure 5.15: Network statistics collected by the data-driven monitoring agent during the
dynamic link weight mobility scenario. During this scenario, no faults occurred.

were conducted in the context of the motivating IED detection scenario.

Table 5.4 shows that the novel method of generating qualitatively different plans pro-

duced on average a wider variety of plans than random and domain-independent planning

algorithms. Table 5.5 shows that, while the guided algorithm produces plans with the

greatest variety of plan evaluations, it also generated more dominant plans than any other

algorithm. Together with the frequency distributions of plan evaluations in Figure 5.2,

Figure 5.3, Figure 5.4, and Figure 5.5, the contribution in qualitatively different plan gen-

eration is validated.

96

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350
 0

 1

 2

 3

 4

 5

 6

 7

T
ot

al
 n

um
be

r
of

 d
at

a
pa

ck
et

s
pr

oc
es

se
d

T
ot

al
 n

um
be

r
of

 T
C

P
 r

et
ra

ns
m

it
tim

eo
ut

s

Elapsed Time (sec)

Data-driven Monitoring Agent During Partition/Merge Mobility

Number of data packets
TCP Retransmit Timeouts

Figure 5.16: Network statistics collected by the data-driven monitoring agent during the
partition/merge mobility scenario. During this scenario, failures in plan execution oc-
curred due to lack of network connectivity.

The next contribution validated by empirical results is the comparison of effectiveness

and performance of network-aware agents at planning, execution, and monitoring stages of

the planning process. Figure 5.8 and Figure 5.14 show that the ideal combination of agents

depends on the degree of dynamism in the network. On a mostly-static network, network-

awareness in the planning agent showed improvement in performance of the solution. In

these cases, the overhead imposed by network-aware execution agents decreased the overall

effectiveness. When network links become completely severed, however, adding network-

awareness to execution agents improved performance and effectiveness drastically. In these

97

cases, network-aware planning agents also improved the quality of the solution. Further-

more, experiments show that network-awareness during any stage of the planning process

benefits plan execution. Figure 5.11 shows that the naı̈veexecution agent (which has no

network-awareness) failed the most often, producing the lowest IED detection accuracy

values; Figure 5.12 indicates that executing network-aware actions outperforms execut-

ing random actions; and Figure 5.13 shows that the network-aware planner improved the

performance of execution agents.

Also, experiments were performed to determine which type of monitoring agent was

effective at finding execution errors based on network conditions. Because the analytic

monitor was an active monitor — one that uses the media that it monitors — analytic

monitors are less suitable for disruption-prone environments. The data-driven monitors, on

the other hand, experienced only 9.25% false-positives and 1.85% false-negatives, meaning

they are useful for indications of network-related plan execution failures.

98

6. Conclusions

The contributions of this thesis are:

1. A comparison of methods for modeling network-centric extensions to the planning

problem;

2. Reusable plan evaluators for network-aware planning agents;

3. A novel method of generating qualitatively-different plans over a range of plan eval-

uators; and

4. A comparison of the efficiency and performance of network-aware planning, execu-

tion, and monitoring agents.

The purpose of this thesis is to improve network-centric planning and execution by adding

network-awareness to various stages of the planning process.

6.1 Network-Centric Planning Problem Extensions

Two methods of modeling service distribution in classical planning problems are com-

pared. One method, labeled operator distribution, represents each service as a separate ac-

tion in the planning domain. The other method, resource distribution, represents network

hosts as planning resources. Operator distribution increases the complexity of the planning

domain on the order of the number of hosts and unique services, whereas resource distribu-

tion increases the number of constraints in the world state on the same order. In choosing a

method of modeling service distribution, it is important to consider the performance of the

planner — operator distribution works well for planners that handle large numbers of ac-

tions, whereas resource distribution is better for planners with efficient resource allocation.

Furthermore, duplicate services are better represented by resource distribution.

99

6.2 Network-Aware Plan Evaluators

Reusable plan evaluators for network-centric planning domains are presented. The

evaluators represent end-user concerns when actors are communicating over a dynamic,

heterogeneous network. Each evaluator contains two parts: a partial-plan evaluator and a

full-plan evaluator. The two parts differ in that the partial-plan evaluator does not assume

that temporal constraints are set (actions are ordered). The network-centric plan evaluators

presented attempt to minimize bandwidth usage over network links with the highest qual-

ity. Using these evaluators for plan-space search guidance improved plan execution time

and IED detection accuracy on average in simulated experiments.

6.3 Qualitatively Different Plans

An algorithm for guiding a plan-space planner toward qualitatively-different plan gen-

eration is presented. To judge differences between plans, the algorithm relies on users to

specify domain-dependent and/or network-centric plan evaluation criteria. Using a GUI

for visualizing plan evaluations, I discovered that interesting problems exhibited a natural

trade-off between two or more plan evaluation criteria. On average, the algorithm produced

a greater range of plan evaluations than domain-independent and random algorithms. Also,

the large variety of the solutions was not at the expense of the solution quality. The guided

algorithm produced 59.3% of the dominant plans produced by all three algorithms, com-

pared to 33.3% by the random algorithm and 7.4% by the domain-independent algorithm.

6.4 Network-Aware Agents

Also presented are methods of incorporating network-awareness into planning, execu-

tion, and monitoring agents. These agents represent the stages of the planning process.

Empirical results indicate that incorporating network-awareness into agents in dynamic,

100

heterogeneous networks improves overall system performance and effectiveness. The ideal

combination of agents, however, depends on the degree of dynamism in the network. Em-

pirical validation is presented in the context of a motivating IED detection scenario.

6.4.1 Network-Aware Planning Agent

A network-aware planning agent uses the qualitatively-different plan generation algo-

rithm in conjunction with two network-centric plan evaluation criteria: bandwidth usage

and link quality. Although experiences show that these two criteria alone do not produce

sufficiently different plans, these criteria are the starting-point for a set of domain-reusable

network-centric plan evaluators.

In a static, heterogeneous network, network-aware planning agents improved the perfor-

mance of the solution by tailoring the plan to utilize lower-cost network links. On average,

network-aware planning agents improved plan execution in all network-centric environ-

ments, but they show the most improvement in static, heterogeneous networks.

6.4.2 Network-Aware Execution Agents

There are two stages when execution agents can exhibit network-awareness: initial re-

source grounding (selecting a host on which to execute an action and the resources the

action will use) and plan repair (after an execution fault). Two execution agents were cre-

ated, both of which use network-proximity (obtained from a routing protocol) to augment

or repair plan actions. The reactive execution agent only seeks to repair failed plan actions,

whereas the proactive execution agent conducts resource grounding prior to executing an

action in addition to performing reactive execution.

In static, heterogeneous networks, the overhead imposed by network-aware execution

agents slightly decreased the overall effectiveness of the system. However, when the dy-

namism of the network increases, adding network-awareness to execution agents improved

101

execution performance and effectiveness drastically. Because network-aware execution

agents only improved system effectiveness in highly-dynamic networks, they should only

be used when network dynamism is possible.

6.4.3 Network-Aware Monitoring Agents

Two types of monitoring agents represent data-driven and analytic approaches to fault

detection and isolation. Passive, data-driven monitoring agents outperformed analytic mon-

itoring agents in disruption-prone environments. The data-driven monitoring agent experi-

enced only 9.25% type I errors and 1.85% type II errors in the experiments.

6.5 Future Work

The experiments presented only used two of the three approaches to FDI. Future work

will investigate the use of network-aware, domain-specific, knowledge-based monitoring

agents for further improving the performance and effectiveness of monitoring agents in

distributed environments.

Another area of future work will incorporate the effects of planning actions into heuris-

tics. For example, a planning action that physically moves a host in a network will have

some effect on the network-based plan evaluators. Reasoning about the effects of planning

actions should drastically improve upon search guidance in qualitatively-different plan gen-

eration.

102

Bibliography

[1] J. Ahrenholz, C. Danilov, T.R. Henderson, and J.H. Kim. Core: A real-time network
emulator. pages 1–7, Nov. 2008.

[2] Jorge A. Baier and Sheila A. McIlraith. Planning with preferences. AI Magazine,
29(4):25–36, 2009.

[3] V.R. Basili, G. Caldiera, and H.D. Rombach. The Goal Question Metric approach.
Encyclopedia of Software Engineering, 1:528–532, 1994.

[4] Jim Blythe. An overview of planning under uncertainty. pages 85–110. 1999.

[5] Blai Bonet. Planning as heuristic search. Artificial Intelligence, 129:5–33, 2001.

[6] Blai Bonet, Gábor Loerincs, and Héctor Geffner. A robust and fast action selection
mechanism for planning. In Proceedings of the 14th National Conference on Artifi-
cial Intelligence and 9th Innovative Applications of Artificial Intelligence Conference
(AAAI-97/IAAI-97), pages 714–719, Menlo Park, July 1997. AAAI Press.

[7] A. Bouguerra, L. Karlsson, and A. Saffiotti. Semantic knowledge-based execution
monitoring for mobile robots. In Proceedings of the International Conference on
Robotics and Automation, pages 3693–3698, 2007.

[8] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural as-
sumptions and computational leverage. Journal of Artificial Intelligence Research,
11(1):94, 1999.

[9] L.H. Chiang, E. Russell, and R.D. Braatz. Fault detection and diagnosis in industrial
systems. Springer, 2001.

[10] Alessandro Cimatti and Marco Roveri. Conformant planning via model checking. In
Proceedings of the European Conference on Planning, pages 21–34. Springer-Verlag,
1999.

[11] K. Currie and A. Tate. O-Plan: The Open Planning Architecture. Artificial Intelli-
gence, 52(1):49–86, 1991.

[12] Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann Nicholson. Planning
with deadlines in stochastic domains. In Proceedings of the National Conference on
Artificial Intelligence, pages 574–579, 1993.

[13] Denise Draper, Steve Hanks, and Daniel Weld. Probabilistic planning with informa-
tion gathering and contingent execution. pages 31–36. AAAI Press, 1994.

103

[14] M. Drummond and J. Bresina. Anytime synthetic projection: Maximizing the proba-
bility of goal satisfaction. In Proceedings of the Association for the Advancement of
Artificial Intelligence, pages 138–144, Boston, MA, 1990.

[15] S. Edelkamp. Cost-optimal symbolic pattern database planning with state trajectory
and preference constraints. In Proceedings of the Workshop on Preferences and Soft
Constraints in Planning at the International Conference on Automated Planning and
Scheduling, 2006.

[16] Kutluhan Erol, James A. Hendler, and Dana S. Nau. UMCP: A sound and complete
procedure for hierarchical task-network planning. In Artificial Intelligence Planning
Systems, pages 249–254, 1994.

[17] Jerome A. Feldman and Robert F. Sproull. Decision theory and artificial intelligence
ii: The hungry monkey. Cognitive Science: A Multidisciplinary Journal, 1(2):158–
192, 1977.

[18] George Ferguson, James F. Allen, and Brad Miller. Trains-95: Towards a mixed-
initiative planning assistant. In Proceedings of the National Conference on Artificial
Intelligence, pages 70–77. AAAI Press, 1996.

[19] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing general-
ized robot plans. pages 485–503, 1993.

[20] R.J. Firby. An investigation into reactive planning in complex domains. In Proceed-
ings of the National Conference on Artificial Intelligence, pages 202–206, 1987.

[21] Robert James Firby. Adaptive execution in complex dynamic worlds. Technical re-
port, 1989.

[22] Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing tempo-
ral planning domains. Journal of Artificial Intelligence Research, 20:2003, 2003.

[23] MP Georgeff and AL Lansky. Procedural knowledge. Proceedings of the IEEE,
74(10):1383–1398, 1986.

[24] M.P. Georgeff and A.L. Lansky. Reactive reasoning and planning. In Proceedings of
the National Conference on Artificial Intelligence, pages 677–682. Seattle, WA, 1987.

[25] A. Gerevini and D. Long. Plan constraints and preferences in PDDL3: The language
of the fifth international planning competition. University of Brescia, Italy, Tech. Rep,
2005.

[26] A. Gerevini and D. Long. Plan constraints and preferences in PDDL3. In Workshop
on Soft Constraints and Preferences in Planning in the International Conference on
Automated Planning and Scheduling, 2006.

[27] J. Gertler. Fault detection and diagnosis in engineering systems. CRC Press, 1998.

104

[28] Robert Goldman and Mark Boddy. Epsilon-safe planning. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence, pages 253–26, San Francisco,
CA, 1994. Morgan Kaufmann.

[29] X. Gu, K. Nahrstedt, RN Chang, and C. Ward. QoS-assured service composition in
managed service overlay networks. In Proceedings of Distributed Computing Sys-
tems, pages 194–201, 2003.

[30] Kristian J. Hammond. Explaining and repairing plans that fail. Artificial Intelligence,
45:173–228, 1990.

[31] David M. Hart, Scott D. Anderson, and Paul R. Cohen. Envelopes as a vehicle for
improving the efficiency of plan execution. In Proceedings of the Workshop on Inno-
vative Approaches to Planning, Scheduling and Control, pages 71–76. Morgan Kauf-
mann, 1990.

[32] J. Hoffmann. The Metric-FF planning system: Translating and ignoring delete lists
to numeric state variables. Journal of Artificial Intelligence Research, 20:291–341,
2003.

[33] Jörg Hoffmann, Piergiorgio Bertoli, Malte Helmert, and Marco Pistore. Message-
based web service composition, integrity constraints, and planning under uncertainty:
A new connection. Journal of Artificial Intelligence Research, 35:49–117, 2009.

[34] E.J. Horvitz, J.S. Breese, and M. Henrion. Decision theory in expert systems and
artificial intelligence. International Journal of Approximate Reasoning, 2(3):247–
302, 1988.

[35] R. Isermann and P. Balle. Trends in the application of model-based fault detection
and diagnosis of technical processes. Control Engineering Practice, 5(5):709–719,
1997.

[36] Gal A. Kaminka, David V. Pynadath, and Milind Tambe. Monitoring teams by over-
hearing: A multi-agent plan recognition approach. Journal of Artificial Intelligence
Research, 17:83–135, 2002.

[37] Sven Koenig. Optimal probabilistic and decision-theoretic planning using markovian
decision theory. Technical Report UCB/CSD-92-685, EECS Department, University
of California, Berkeley, May 1992.

[38] Nicholas Kushmerick, Steve Hanks, and Daniel S. Weld. An algorithm for probabilis-
tic planning. Artificial Intelligence, 76(1-2):239–286, 1995.

[39] Y. Lacharite, Maoyu Wang, L. Lamont, and L. Landmark. A simplified approach to
multicast forwarding gateways in MANET. pages 426–430, Oct. 2007.

105

[40] KB Lamine and F. Kabanza. History checking of temporal fuzzy logic formulas for
monitoring behavior-based mobile robots. In Proceedings of the IEEE International
Conference on Tools with Artificial Intelligence, page 312, Washington, DC, USA,
2000. IEEE Computer Society.

[41] J.A. Macedo and K. Lim. Adaptive Change Detection Methodology for Buried Mine
and IED Detection from Space.

[42] SP Mahambre, M. Kumar, and U. Bellur. A taxonomy of QOS-aware, adaptive event-
dissemination middleware. IEEE Internet Computing, 11(4):35–44, 2007.

[43] T.M. Mansell. A method for planning given uncertain and incomplete information.
In Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence, pages
350–358, 1993.

[44] D. McDermott. A heuristic estimator for means-ends analysis in planning. In Pro-
ceedings of the International Conference on Artificial Intelligence Planning Systems,
pages 142–149. AAAI Press, 1996.

[45] K. Miettinen. Nonlinear multiobjective optimization. Springer, 1999.

[46] K. Myers and T. Lee. Generating qualitatively different plans through metatheoretic
biases. In Proceedings of the National Conference on Artificial Intelligence. AAAI
Press, 1999.

[47] K. L. Myers. Metatheoretic plan summarization and comparison. In Proceedings of
the International Conference on Automated Planning and Scheduling. AAAI Press,
June 2006.

[48] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, Hector Munoz-Avila,
J. William Murdock, Dan Wu, and Fusun Yaman. Applications of SHOP and SHOP2.
IEEE Intelligent Systems, 20(2):34–41, 2005.

[49] Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning: Theory & Prac-
tice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[50] RJ Patton, CJ Lopez-Toribio, and FJ Uppal. Artificial intelligence approaches to
fault diagnosis. In IEE Colloquium on Condition Monitoring: Machinery, External
Structures and Health (Ref. No. 1999/034), page 5, 1999.

[51] J.S. Penberthy and D. Weld. UCPOP: A sound, complete, partial order planner for
ADL. In Proceedings of the International Conference on Knowledge Representation
and Reasoning, pages 103–114, 1992.

[52] O. Pettersson, L. Karlsson, and A. Saffiotti. Model-free execution monitoring by
learning from simulation. In Proceedings of the IEEE International Symposium on
Computational Intelligence in Robotics and Automation, Helsinki, Finland, 2005.

106

[53] Ola Pettersson. Execution monitoring in robotics: A survey. Robotics and Au-
tonomous Systems, 53:73–88, 2005.

[54] M. Peysakhov, D. Artz, E. Sultanik, and W. Regli. Network awareness for mobile
agents on ad hoc networks. In Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 368–376, Washington, DC, USA,
2004. IEEE Computer Society.

[55] L. Pryor and G. Collins. Cassandra: Planning for contingencies (Technical report No.
41). The Institute for Learning Sciences, Northwestern University, 1993.

[56] Louise Pryor and Gregg Collins. Planning for contingencies: A decision-based ap-
proach. Journal of Artificial Intelligence Research, 4:287–339, 1996.

[57] Patrick Riley and Manuela Veloso. Planning for distributed execution through use
of probabilistic opponent models. In Proceedings of the International Conference on
Artificial Intelligence Planning and Scheduling, 2002.

[58] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, and M. Stollberg. Web service
modeling ontology. Applied Ontology, 1(1):77–106, 2005.

[59] M. J. Schoppers. Universal plans for reactive robots in unpredictable environments. In
John Mcdermott, editor, Proceedings of the International Joint Conference on Artifi-
cial Intelligence, pages 1039–1046, Milan, Italy, 1987. Morgan Kaufmann publishers
Inc.: San Mateo, CA, USA.

[60] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN planning for web service
composition using SHOP2. Web Semantics Journal, 2004.

[61] D. Smith. Choosing objectives in over-subscription planning. In Proceedings of the
International Conference on Automated Planning and Scheduling, pages 393–401,
2004.

[62] Shirin Sohrabi, Natasha Prokoshyna, and Sheila. A. McIlraith. Web service composi-
tion via generic procedures and customizing user preferences. In Proceedings of the
International Semantic Web Conference, pages 597–611, 2006.

[63] B. Srivastava, S. Kambhampati, M. H. Do, and T. Nguyen. Finding inter-related
plans. In Proceedings of the International Conference on Automated Planning and
Scheduling Workshop on Plan Analysis and Management, 2006.

[64] L.A. Suchman and L.A. Suchman. Plans and situated actions: The problem of
human-machine communication. Cambridge University Press, 1987.

[65] A. Tate and J. Dalton. O-Plan: a common Lisp planning web service. In Proceedings
of the International Lisp Conference 2003, pages 12–25, 2003.

107

[66] A. Tate, J. Dalton, and J. Levine. Generation of multiple qualitatively different plan
options. In Proceedings of International Conference on AI Planning Systems, pages
27–35, 1998.

[67] Austin Tate. Generating project networks. In IJCAI, pages 888–893, 1977.

[68] Austin Tate. Authority management - coordination between task assignment, planning
and execution. In Proceedings of International Joint Conferences on Artificial Intelli-
gence Workshop on Knowledge-based Production Planning, Scheduling and Control,
1993.

[69] Austin Tate. Coalition task support using I-X and <I-N-C-A>. In Vladimı́r Marı́k,
Jörg P. Müller, and Michal Pěchouček, editors, CEEMAS, volume 2691 of Lecture
Notes in Computer Science, pages 7–16. Springer, 2003.

[70] K. Usbeck, M. Chase, T. Wambold, C. Rumford, A. Kaplan, and W. Regli. As-
sessment of WiMAX for command and control applications in urban environments.
Technical report, Project ACIN, 2009.

[71] Kyle Usbeck, William C. Regli, Gerhard Wickler, and Austin Tate. Finding dominant
plans using plan evaluation criteria. In Proceedings of Knowledge Systems for Coali-
tion Operations, pages 36–45, Chilworth Manor, Southampton, UK, MAR 2009.

[72] M. van den Briel, S. Kambhampati, and T. Vossen. Planning with preferences and tra-
jectory constraints by integer programming. In Proceedings of the Workshop on Pref-
erences and Soft Constraints at the International Conference on Automated Planning
and Scheduling, 2006.

[73] D. E. Wilkins. Recovering from execution errors in SIPE. AI Center Technical Note
346, SRI International, January 1985.

[74] David E. Wilkins. Can AI planners solve practical problems? Computational Intelli-
gence, 6(4):232–246, 1990.

[75] David E. Wilkins, Thomas J. Lee, and Pauline Berry. Interactive execution monitoring
of agent teams. Journal of Artificial Intelligence Research, 18:217–261, 2003.

[76] E. Wilkins, Karen L. Myers, and John D. Lowrance. Planning and reacting in un-
certain and dynamic environments. Journal of Experimental and Theoretical AI, 7,
1995.

[77] World Wide Web Consortium. Owl-s: Semantic markup for web services, November
2004. http://www.w3.org/Submission/OWL-S/.

[78] G. Wu, M. Mizuno, and PJM Havinga. MIRAI architecture for heterogeneous net-
work. IEEE Communications Magazine, 40(2):126–134, 2002.

[79] Shlomo Zilberstein. On the utility of planning. In M. Pollack (Ed.), SIGART Bulletin
Special Issue on Evaluating Plans, Planners, and Planning Systems, 6:6–1, 1995.

108

Appendix A. IED Detection Scenario Domain

1 ; ; ; Ky le Usbeck

2 ; ; ; IED D e t e c t i o n Domain

3

4 (domain (name ”IED D e t e c t i o n ”))

5

6 ; ; sweep m u l t i p l e l o c a t i o n s f o r IEDs (TODO add more l o c a t i o n s)

7 (r e f i n e m e n t sweepForIEDs (sweepForIEDs)

8 (nodes

9 (1 (checkForIEDAt l o c a t i o n 1))

10 (2 (checkForIEDAt l o c a t i o n 2))

11 (3 (checkForIEDAt l o c a t i o n 3))

12 ; (4 (checkForIEDAt l o c a t i o n 4))

13)

14 (c o n s t r a i n t s

15 ; (w o r l d− s t a t e c o n d i t i o n (t y p e ? node1) = node)

16 ; (w o r l d− s t a t e c o n d i t i o n (t y p e ? node2) = node)

17 ; (w o r l d− s t a t e c o n d i t i o n (t y p e ? node3) = node)

18 ; (w o r l d− s t a t e c o n d i t i o n (t y p e ? node4) = node)

19)

20 (a n n o t a t i o n s

21 (comments = ” ”)))

22

23 ; ; check f o r IED a t a s i n g l e l o c a t i o n

24 (r e f i n e m e n t checkForIEDAt (checkForIEDAt ? l o c a t i o n)

25 (v a r i a b l e s ? node ? l o c a t i o n)

26 (c o n s t r a i n t s

27 (w o r l d− s t a t e c o n d i t i o n (t y p e ? node) = node)

28 ; (w o r l d− s t a t e c o n d i t i o n (checkForIEDAt ? node) = t r u e)

29 (w o r l d− s t a t e c o n d i t i o n (t y p e ? l o c a t i o n) = l o c a t i o n)

109

30 (w o r l d− s t a t e c o n d i t i o n (checked ? l o c a t i o n) = f a l s e)

31 (w o r l d− s t a t e c o n d i t i o n (s e a r c h e d ? l o c a t i o n) = t r u e)

32 (w o r l d− s t a t e e f f e c t (checked ? l o c a t i o n) = t r u e))

33 (a n n o t a t i o n s

34 (comments = ” ”)))

35

36 ; ; per fo rm a manual s e a r c h o f a l o c a t i o n f o r an IED

37 (r e f i n e m e n t manua lSea rch (manua lSea rch ? node ? l o c a t i o n)

38 (v a r i a b l e s ? node ? r e s u l t R e p o r t e r N o d e ? l o c a t i o n)

39 (nodes

40 (1 (phys ica lMove ? node ? l o c a t i o n))

41 (2 (conduc tScan ? node ? l o c a t i o n))

42 (3 (phys ica lMove ? r e s u l t R e p o r t e r N o d e ? l o c a t i o n))

43 (4 (r e p o r t R e s u l t s ? r e s u l t R e p o r t e r N o d e ? l o c a t i o n)))

44 (c o n s t r a i n t s

45 (w o r l d− s t a t e c o n d i t i o n (t y p e ? node) = node)

46 (w o r l d− s t a t e c o n d i t i o n (manua lSea rch ? node) = t r u e)

47 (w o r l d− s t a t e c o n d i t i o n (t y p e ? r e s u l t R e p o r t e r N o d e) = node)

48 (w o r l d− s t a t e c o n d i t i o n (r e s u l t R e p o r t ? r e s u l t R e p o r t e r N o d e) = t r u e)

49 ; manualSearch i m p l i e s ? node i s s e a r c h R e s o u r c e

50 (w o r l d− s t a t e c o n d i t i o n (t y p e ? l o c a t i o n) = l o c a t i o n)

51 (w o r l d− s t a t e c o n d i t i o n (s e a r c h e d ? l o c a t i o n) = f a l s e)

52 (w o r l d− s t a t e e f f e c t (s e a r c h e d ? l o c a t i o n) = t r u e))

53 (a n n o t a t i o n s

54 (comments = ” ”)))

55

56 ; ; per fo rm a p h o t o g r a p h i c S e a r c h o f a l o c a t i o n f o r an IED

57 (r e f i n e m e n t p h o t o g r a p h i c S e a r c h (p h o t o g r a p h i c S e a r c h ? node ? l o c a t i o n)

58 (v a r i a b l e s ? node ? photoArch iveNode ? l o c a t i o n

59 ? camera ? pho to ? o l d P h o t o ? photoCompNode

60 ? r e s u l t R e p o r t e r N o d e)

61 (nodes

110

62 (1 (acqu i r eCamera ? node ? l o c a t i o n ? camera))

63 (2 (phys ica lMove ? node ? l o c a t i o n))

64 (3 (t a k e P h o t o ? node ? l o c a t i o n ? camera t o ? pho to))

65 (4 (g e t O l d P h o t o ? photoArch iveNode t o ? o l d P h o t o))

66 (5 (comparePho tos ? photoCompNode ? pho to ? o l d P h o t o))

67 (6 (r e p o r t R e s u l t s ? r e s u l t R e p o r t e r N o d e ? l o c a t i o n)))

68 (c o n s t r a i n t s

69 (w o r l d− s t a t e c o n d i t i o n (t y p e ? node) = node)

70 (w o r l d− s t a t e c o n d i t i o n (p h o t o g r a p h i c S e a r c h ? node) = t r u e)

71 ; p h o t o g r a p h i c S e a r c h i m p l i e s ? node i s a p h o t o R e s o u r c e

72 (w o r l d− s t a t e c o n d i t i o n (t y p e ? l o c a t i o n) = l o c a t i o n)

73 (w o r l d− s t a t e c o n d i t i o n (s e a r c h e d ? l o c a t i o n) = f a l s e)

74 (w o r l d− s t a t e c o n d i t i o n (t y p e ? photoArch iveNode) = node)

75 (w o r l d− s t a t e c o n d i t i o n (t y p e ? photoCompNode) = node)

76 (w o r l d− s t a t e c o n d i t i o n (p h o t o A r c h i v e ? photoArch iveNode) = t r u e)

77 (w o r l d− s t a t e c o n d i t i o n (photoCompare ? photoCompNode) = t r u e)

78 (w o r l d− s t a t e e f f e c t (s e a r c h e d ? l o c a t i o n) = t r u e))

79 (a n n o t a t i o n s

80 (comments = ” ”)))

81

82 ; ; a c q u i r e a camera t o t a k e a pho to o f l o c a t i o n u s i n g p h o t o R e s o u r c e

83 ; Note : t h i s l o o k s wierd on t h e map because i t e s s e n t i a l l y moves t h e

84 ; node t o t h e camera a t t h e same t i m e as moving t h e camera t o t h e

85 ; p i c t u r e d e s t i n a t i o n , b u t i t works !

86 (r e f i n e m e n t acqu i r eCamera (acqu i r eCamera ? node ? l o c a t i o n ? camera)

87 (v a r i a b l e s ? node ? l o c a t i o n ? camera

88 ? c a m l a t ? camlong ? l o c l a t ? l o c l o n g)

89 (nodes

90 (1 (physicalMoveToCamera ? node ? camera)))

91 (c o n s t r a i n t s

92 (w o r l d− s t a t e c o n d i t i o n (t y p e ? node) = node)

93 ; t y p e node i m p l i e s ? node i s a ne twork node

111

94 (w o r l d− s t a t e c o n d i t i o n (p h o t o g r a p h i c S e a r c h ? node) = t r u e)

95 ; p h o t o g r a p h i c S e a r c h i m p l i e s ? node i s a p h o t o R e s o u r c e

96 (w o r l d− s t a t e c o n d i t i o n (t y p e ? camera) = camera)

97 (w o r l d− s t a t e c o n d i t i o n (l a t i t u d e ? camera) = ? c a m l a t)

98 (w o r l d− s t a t e c o n d i t i o n (l o n g i t u d e ? camera) = ? camlong)

99 (w o r l d− s t a t e c o n d i t i o n (l a t i t u d e ? l o c a t i o n) = ? l o c l a t)

100 (w o r l d− s t a t e c o n d i t i o n (l o n g i t u d e ? l o c a t i o n) = ? l o c l o n g)

101 (w o r l d− s t a t e c o n d i t i o n (inUse ? camera) = f a l s e)

102 (w o r l d− s t a t e e f f e c t (l a t i t u d e ? camera) = ? l o c l a t)

103 (w o r l d− s t a t e e f f e c t (l o n g i t u d e ? camera) = ? l o c l o n g)

104 (w o r l d− s t a t e e f f e c t (inUse ? camera) = ? node))

105 (a n n o t a t i o n s

106 (comments = ” ”)))

107

108 ; ; r e l e a s e t h e camera from use (so o t h e r s can use i t)

109 (r e f i n e m e n t r e l e a s e C a m e r a (r e l e a s e C a m e r a ? camera)

110 (v a r i a b l e s ? node ? camera)

111 (c o n s t r a i n t s

112 (w o r l d− s t a t e c o n d i t i o n (t y p e ? camera) = camera)

113 (w o r l d− s t a t e c o n d i t i o n (inUse ? camera) = ? node)

114 (w o r l d− s t a t e c o n d i t i o n (t y p e ? node) = node)

115 (w o r l d− s t a t e e f f e c t (inUse ? camera) = f a l s e))

116 (a n n o t a t i o n s

117 (comments = ” ”)))

118

119

120 ; ; t a k e a pho to o f a l o c a t i o n w i t h a camera

121 (r e f i n e m e n t t a k e P h o t o (t a k e P h o t o ? node ? l o c a t i o n ? camera t o ? pho to)

122 (v a r i a b l e s ? node ? camera ? l o c a t i o n ? pho to

123 ; ? ca ml a t ? camlong ? l o c l a t ? l o c l o n g

124)

125 (c o n s t r a i n t s

112

126 (w o r l d− s t a t e c o n d i t i o n (t y p e ? node) = node)

127 (w o r l d− s t a t e c o n d i t i o n (p h o t o g r a p h i c S e a r c h ? node) = t r u e)

128 ; i m p l i e s node i s c a p a b l e o f u s i n g camera

129 (w o r l d− s t a t e c o n d i t i o n (t y p e ? l o c a t i o n) = l o c a t i o n)

130 (w o r l d− s t a t e c o n d i t i o n (inUse ? camera) = ? node)

131 ; camera i s i n use by node

132 ; l o c a t i o n o f camera . . .

133 ; (w o r l d− s t a t e c o n d i t i o n (l a t i t u d e ? camera) = ? c aml a t)

134 ; (w o r l d− s t a t e c o n d i t i o n (l o n g i t u d e ? camera) = ? camlong)

135 ; (w o r l d− s t a t e c o n d i t i o n (l a t i t u d e ? l o c a t i o n) = ? l o c l a t)

136 ; (w o r l d− s t a t e c o n d i t i o n (l o n g i t u d e ? l o c a t i o n) = ? l o c l o n g)

137 ; (w o r l d− s t a t e c o n d i t i o n (l a t i t u d e ? camera) = ? l o c l a t)

138 ; (w o r l d− s t a t e c o n d i t i o n (l o n g i t u d e ? camera) = ? l o c l o n g)

139)

140 (a n n o t a t i o n s

141 (o u t p u t−o b j e c t s = ((? pho to pho to)))))

142

143 ; ; g e t an o l d pho to from an a r c h i v e

144 (r e f i n e m e n t g e t O l d P h o t o (g e t O l d P h o t o ? node t o ? o l d P h o t o)

145 (v a r i a b l e s ? node ? o l d P h o t o)

146 (c o n s t r a i n t s

147 (w o r l d− s t a t e c o n d i t i o n (t y p e ? node) = node)

148 (w o r l d− s t a t e c o n d i t i o n (p h o t o A r c h i v e ? node) = t r u e))

149 (a n n o t a t i o n s

150 (o u t p u t−o b j e c t s = ((? o l d P h o t o pho to)))))

151

152 ; ; compare a pho to and an o l d pho to f o r IED p o s s i b i l i t i e s

153 (r e f i n e m e n t comparePho tos (comparePho tos ? node ? pho to ? o l d P h o t o)

154 (v a r i a b l e s ? node ? pho to ? o l d P h o t o)

155 (c o n s t r a i n t s

156 (w o r l d− s t a t e c o n d i t i o n (t y p e ? node) = node)

157 (w o r l d− s t a t e c o n d i t i o n (photoCompare ? node) = t r u e)

113

158 ; (w o r l d− s t a t e c o n d i t i o n (t y p e ? pho to) = pho to)

159 ; (w o r l d− s t a t e c o n d i t i o n (t y p e ? o l d P h o t o) = pho to)

160)

161 (a n n o t a t i o n s

162 (comments = ” ”)))

163

164 ; ; do a p h y s i c a l move t o l o c a t i o n

165 (r e f i n e m e n t phys ica lMove (phys ica lMove ? node ? l o c a t i o n)

166 (v a r i a b l e s ? node ? l o c a t i o n ? l a t i t u d e ? l o n g i t u d e)

167 (c o n s t r a i n t s

168 (w o r l d− s t a t e c o n d i t i o n (t y p e ? node) = node)

169 (w o r l d− s t a t e c o n d i t i o n (t y p e ? l o c a t i o n) = l o c a t i o n)

170 (w o r l d− s t a t e c o n d i t i o n (l a t i t u d e ? l o c a t i o n) = ? l a t i t u d e)

171 (w o r l d− s t a t e c o n d i t i o n (l o n g i t u d e ? l o c a t i o n) = ? l o n g i t u d e)

172 (w o r l d− s t a t e e f f e c t (l a t i t u d e ? node) = ? l a t i t u d e)

173 (w o r l d− s t a t e e f f e c t (l o n g i t u d e ? node) = ? l o n g i t u d e))

174 (a n n o t a t i o n s

175 (comments = ” ”)))

176

177 ; ; do a p h y s i c a l move t o a l a t / l n g

178 (r e f i n e m e n t physicalMoveToCamera (physicalMoveToCamera ? node ? camera)

179 (v a r i a b l e s ? node ? camera ? l a t i t u d e ? l o n g i t u d e)

180 (c o n s t r a i n t s

181 (w o r l d− s t a t e c o n d i t i o n (t y p e ? node) = node)

182 (w o r l d− s t a t e c o n d i t i o n (t y p e ? camera) = camera)

183 (w o r l d− s t a t e c o n d i t i o n (l a t i t u d e ? camera) = ? l a t i t u d e)

184 (w o r l d− s t a t e c o n d i t i o n (l o n g i t u d e ? camera) = ? l o n g i t u d e)

185 (w o r l d− s t a t e e f f e c t (l a t i t u d e ? node) = ? l a t i t u d e)

186 (w o r l d− s t a t e e f f e c t (l o n g i t u d e ? node) = ? l o n g i t u d e))

187 (a n n o t a t i o n s

188 (comments = ” ”)))

189

114

190 ; ; c o n d u c t a manual scan o f a l o c a t i o n

191 (r e f i n e m e n t conduc tScan (conduc tScan ? node ? l o c a t i o n)

192 (v a r i a b l e s ? node ? l o c a t i o n ? l a t i t u d e ? l o n g i t u d e)

193 (c o n s t r a i n t s

194 (w o r l d− s t a t e c o n d i t i o n (t y p e ? node) = node)

195 (w o r l d− s t a t e c o n d i t i o n (manua lSea rch ? node) = t r u e)

196 (w o r l d− s t a t e c o n d i t i o n (t y p e ? l o c a t i o n) = l o c a t i o n)

197 (w o r l d− s t a t e c o n d i t i o n (l a t i t u d e ? l o c a t i o n) = ? l a t i t u d e)

198 (w o r l d− s t a t e c o n d i t i o n (l o n g i t u d e ? l o c a t i o n) = ? l o n g i t u d e)

199 (w o r l d− s t a t e c o n d i t i o n (l a t i t u d e ? node) = ? l a t i t u d e)

200 (w o r l d− s t a t e c o n d i t i o n (l o n g i t u d e ? node) = ? l o n g i t u d e))

201 (a n n o t a t i o n s

202 (comments = ” ”)))

203

204 ; ; r e p o r t r e s u l t s o f a l o c a t i o n t e s t t o an a u t h o r i t y

205 (r e f i n e m e n t r e p o r t R e s u l t s (r e p o r t R e s u l t s ? node ? l o c a t i o n)

206 (v a r i a b l e s ? node ? l o c a t i o n)

207 (c o n s t r a i n t s

208 (w o r l d− s t a t e c o n d i t i o n (r e s u l t R e p o r t ? node) = t r u e)

209 (w o r l d− s t a t e c o n d i t i o n (t y p e ? node) = node)

210 (w o r l d− s t a t e c o n d i t i o n (t y p e ? l o c a t i o n) = l o c a t i o n))

211 (a n n o t a t i o n s

212 (comments = ” R e s u l t s R e p o r t e d ”)))

213

214 (a n n o t a t i o n s

215 (comments = ” ”))

1 <p l a n xmlns=” h t t p : / /www. a i a i . ed . ac . uk / p r o j e c t / i x / ”>

2 <plan−nodes>

3 < l i s t>

4 <plan−node i d =” node−1”>

5 < a c t i v i t y>

115

6 < a c t i v i t y>

7 <p a t t e r n>

8 < l i s t>

9 <symbol>sweepForIEDs< / symbol>

10 < / l i s t>

11 < / p a t t e r n>

12 < / a c t i v i t y>

13 < / a c t i v i t y>

14 < / p lan−node>

15 < / l i s t>

16 < / p lan−nodes>

17 <world−s t a t e>

18 < l i s t>

19 <!−− Network Nodes −−>

20 <!−− Network Node 1−−>

21 <p a t t e r n−a s s i g n m e n t>

22 <p a t t e r n>

23 < l i s t>

24 <symbol>t y p e< / symbol>

25 <symbol>node1< / symbol>

26 < / l i s t>

27 < / p a t t e r n>

28 <v a l u e>

29 <symbol>node< / symbol>

30 < / v a l u e>

31 < / p a t t e r n−a s s i g n m e n t>

32 <p a t t e r n−a s s i g n m e n t>

33 <p a t t e r n>

34 < l i s t>

35 <symbol> l a t i t u d e< / symbol>

36 <symbol>node1< / symbol>

37 < / l i s t>

116

38 < / p a t t e r n>

39 <v a l u e>

40 <symbol>39 .030445< / symbol>

41 < / v a l u e>

42 < / p a t t e r n−a s s i g n m e n t>

43 <p a t t e r n−a s s i g n m e n t>

44 <p a t t e r n>

45 < l i s t>

46 <symbol> l o n g i t u d e< / symbol>

47 <symbol>node1< / symbol>

48 < / l i s t>

49 < / p a t t e r n>

50 <v a l u e>

51 <symbol>−74.685936< / symbol>

52 < / v a l u e>

53 < / p a t t e r n−a s s i g n m e n t>

54 <!−− Network Node 2−−>

55 <p a t t e r n−a s s i g n m e n t>

56 <p a t t e r n>

57 < l i s t>

58 <symbol>t y p e< / symbol>

59 <symbol>node2< / symbol>

60 < / l i s t>

61 < / p a t t e r n>

62 <v a l u e>

63 <symbol>node< / symbol>

64 < / v a l u e>

65 < / p a t t e r n−a s s i g n m e n t>

66 <p a t t e r n−a s s i g n m e n t>

67 <p a t t e r n>

68 < l i s t>

69 <symbol> l a t i t u d e< / symbol>

117

70 <symbol>node2< / symbol>

71 < / l i s t>

72 < / p a t t e r n>

73 <v a l u e>

74 <symbol>39 .324776< / symbol>

75 < / v a l u e>

76 < / p a t t e r n−a s s i g n m e n t>

77 <p a t t e r n−a s s i g n m e n t>

78 <p a t t e r n>

79 < l i s t>

80 <symbol> l o n g i t u d e< / symbol>

81 <symbol>node2< / symbol>

82 < / l i s t>

83 < / p a t t e r n>

84 <v a l u e>

85 <symbol>−74.404686< / symbol>

86 < / v a l u e>

87 < / p a t t e r n−a s s i g n m e n t>

88 <!−− Network Node 3−−>

89 <p a t t e r n−a s s i g n m e n t>

90 <p a t t e r n>

91 < l i s t>

92 <symbol>t y p e< / symbol>

93 <symbol>node3< / symbol>

94 < / l i s t>

95 < / p a t t e r n>

96 <v a l u e>

97 <symbol>node< / symbol>

98 < / v a l u e>

99 < / p a t t e r n−a s s i g n m e n t>

100 <p a t t e r n−a s s i g n m e n t>

101 <p a t t e r n>

118

102 < l i s t>

103 <symbol> l a t i t u d e< / symbol>

104 <symbol>node3< / symbol>

105 < / l i s t>

106 < / p a t t e r n>

107 <v a l u e>

108 <symbol>39 .639534< / symbol>

109 < / v a l u e>

110 < / p a t t e r n−a s s i g n m e n t>

111 <p a t t e r n−a s s i g n m e n t>

112 <p a t t e r n>

113 < l i s t>

114 <symbol> l o n g i t u d e< / symbol>

115 <symbol>node3< / symbol>

116 < / l i s t>

117 < / p a t t e r n>

118 <v a l u e>

119 <symbol>−76.45781< / symbol>

120 < / v a l u e>

121 < / p a t t e r n−a s s i g n m e n t>

122 <!−− Network Node 4−−>

123 <p a t t e r n−a s s i g n m e n t>

124 <p a t t e r n>

125 < l i s t>

126 <symbol>t y p e< / symbol>

127 <symbol>node4< / symbol>

128 < / l i s t>

129 < / p a t t e r n>

130 <v a l u e>

131 <symbol>node< / symbol>

132 < / v a l u e>

133 < / p a t t e r n−a s s i g n m e n t>

119

134 <p a t t e r n−a s s i g n m e n t>

135 <p a t t e r n>

136 < l i s t>

137 <symbol> l a t i t u d e< / symbol>

138 <symbol>node4< / symbol>

139 < / l i s t>

140 < / p a t t e r n>

141 <v a l u e>

142 <symbol>39 .790974< / symbol>

143 < / v a l u e>

144 < / p a t t e r n−a s s i g n m e n t>

145 <p a t t e r n−a s s i g n m e n t>

146 <p a t t e r n>

147 < l i s t>

148 <symbol> l o n g i t u d e< / symbol>

149 <symbol>node4< / symbol>

150 < / l i s t>

151 < / p a t t e r n>

152 <v a l u e>

153 <symbol>−76.09781< / symbol>

154 < / v a l u e>

155 < / p a t t e r n−a s s i g n m e n t>

156 <!−− Network Node 5−−>

157 <p a t t e r n−a s s i g n m e n t>

158 <p a t t e r n>

159 < l i s t>

160 <symbol>t y p e< / symbol>

161 <symbol>node5< / symbol>

162 < / l i s t>

163 < / p a t t e r n>

164 <v a l u e>

165 <symbol>node< / symbol>

120

166 < / v a l u e>

167 < / p a t t e r n−a s s i g n m e n t>

168 <p a t t e r n−a s s i g n m e n t>

169 <p a t t e r n>

170 < l i s t>

171 <symbol> l a t i t u d e< / symbol>

172 <symbol>node5< / symbol>

173 < / l i s t>

174 < / p a t t e r n>

175 <v a l u e>

176 <symbol>40 .114372< / symbol>

177 < / v a l u e>

178 < / p a t t e r n−a s s i g n m e n t>

179 <p a t t e r n−a s s i g n m e n t>

180 <p a t t e r n>

181 < l i s t>

182 <symbol> l o n g i t u d e< / symbol>

183 <symbol>node5< / symbol>

184 < / l i s t>

185 < / p a t t e r n>

186 <v a l u e>

187 <symbol>−75.12187< / symbol>

188 < / v a l u e>

189 < / p a t t e r n−a s s i g n m e n t>

190 <!−− Node / S e r v i c e Mapping −−>

191 <p a t t e r n−a s s i g n m e n t>

192 <p a t t e r n>

193 < l i s t>

194 <symbol>checkForIEDAt< / symbol>

195 <symbol>node1< / symbol>

196 < / l i s t>

197 < / p a t t e r n>

121

198 <v a l u e>

199 <symbol> t r u e< / symbol>

200 < / v a l u e>

201 < / p a t t e r n−a s s i g n m e n t>

202 <p a t t e r n−a s s i g n m e n t>

203 <p a t t e r n>

204 < l i s t>

205 <symbol>checkForIEDAt< / symbol>

206 <symbol>node2< / symbol>

207 < / l i s t>

208 < / p a t t e r n>

209 <v a l u e>

210 <symbol> t r u e< / symbol>

211 < / v a l u e>

212 < / p a t t e r n−a s s i g n m e n t>

213 <p a t t e r n−a s s i g n m e n t>

214 <p a t t e r n>

215 < l i s t>

216 <symbol>checkForIEDAt< / symbol>

217 <symbol>node5< / symbol>

218 < / l i s t>

219 < / p a t t e r n>

220 <v a l u e>

221 <symbol> t r u e< / symbol>

222 < / v a l u e>

223 < / p a t t e r n−a s s i g n m e n t>

224 <p a t t e r n−a s s i g n m e n t>

225 <p a t t e r n>

226 < l i s t>

227 <symbol>manua lSea rch< / symbol>

228 <symbol>node1< / symbol>

229 < / l i s t>

122

230 < / p a t t e r n>

231 <v a l u e>

232 <symbol> t r u e< / symbol>

233 < / v a l u e>

234 < / p a t t e r n−a s s i g n m e n t>

235 <p a t t e r n−a s s i g n m e n t>

236 <p a t t e r n>

237 < l i s t>

238 <symbol>manua lSea rch< / symbol>

239 <symbol>node2< / symbol>

240 < / l i s t>

241 < / p a t t e r n>

242 <v a l u e>

243 <symbol> t r u e< / symbol>

244 < / v a l u e>

245 < / p a t t e r n−a s s i g n m e n t>

246 <p a t t e r n−a s s i g n m e n t>

247 <p a t t e r n>

248 < l i s t>

249 <symbol>manua lSea rch< / symbol>

250 <symbol>node3< / symbol>

251 < / l i s t>

252 < / p a t t e r n>

253 <v a l u e>

254 <symbol> t r u e< / symbol>

255 < / v a l u e>

256 < / p a t t e r n−a s s i g n m e n t>

257 <p a t t e r n−a s s i g n m e n t>

258 <p a t t e r n>

259 < l i s t>

260 <symbol>manua lSea rch< / symbol>

261 <symbol>node4< / symbol>

123

262 < / l i s t>

263 < / p a t t e r n>

264 <v a l u e>

265 <symbol> t r u e< / symbol>

266 < / v a l u e>

267 < / p a t t e r n−a s s i g n m e n t>

268 <p a t t e r n−a s s i g n m e n t>

269 <p a t t e r n>

270 < l i s t>

271 <symbol>p h o t o g r a p h i c S e a r c h< / symbol>

272 <symbol>node3< / symbol>

273 < / l i s t>

274 < / p a t t e r n>

275 <v a l u e>

276 <symbol> t r u e< / symbol>

277 < / v a l u e>

278 < / p a t t e r n−a s s i g n m e n t>

279 <p a t t e r n−a s s i g n m e n t>

280 <p a t t e r n>

281 < l i s t>

282 <symbol>p h o t o g r a p h i c S e a r c h< / symbol>

283 <symbol>node4< / symbol>

284 < / l i s t>

285 < / p a t t e r n>

286 <v a l u e>

287 <symbol> t r u e< / symbol>

288 < / v a l u e>

289 < / p a t t e r n−a s s i g n m e n t>

290 <p a t t e r n−a s s i g n m e n t>

291 <p a t t e r n>

292 < l i s t>

293 <symbol>p h o t o g r a p h i c S e a r c h< / symbol>

124

294 <symbol>node5< / symbol>

295 < / l i s t>

296 < / p a t t e r n>

297 <v a l u e>

298 <symbol> t r u e< / symbol>

299 < / v a l u e>

300 < / p a t t e r n−a s s i g n m e n t>

301 <p a t t e r n−a s s i g n m e n t>

302 <p a t t e r n>

303 < l i s t>

304 <symbol>p h o t o A r c h i v e< / symbol>

305 <symbol>node5< / symbol>

306 < / l i s t>

307 < / p a t t e r n>

308 <v a l u e>

309 <symbol> t r u e< / symbol>

310 < / v a l u e>

311 < / p a t t e r n−a s s i g n m e n t>

312 <p a t t e r n−a s s i g n m e n t>

313 <p a t t e r n>

314 < l i s t>

315 <symbol>photoCompare< / symbol>

316 <symbol>node4< / symbol>

317 < / l i s t>

318 < / p a t t e r n>

319 <v a l u e>

320 <symbol> t r u e< / symbol>

321 < / v a l u e>

322 < / p a t t e r n−a s s i g n m e n t>

323 <p a t t e r n−a s s i g n m e n t>

324 <p a t t e r n>

325 < l i s t>

125

326 <symbol>photoCompare< / symbol>

327 <symbol>node5< / symbol>

328 < / l i s t>

329 < / p a t t e r n>

330 <v a l u e>

331 <symbol> t r u e< / symbol>

332 < / v a l u e>

333 < / p a t t e r n−a s s i g n m e n t>

334 <p a t t e r n−a s s i g n m e n t>

335 <p a t t e r n>

336 < l i s t>

337 <symbol> r e s u l t R e p o r t< / symbol>

338 <symbol>node2< / symbol>

339 < / l i s t>

340 < / p a t t e r n>

341 <v a l u e>

342 <symbol> t r u e< / symbol>

343 < / v a l u e>

344 < / p a t t e r n−a s s i g n m e n t>

345 <p a t t e r n−a s s i g n m e n t>

346 <p a t t e r n>

347 < l i s t>

348 <symbol> r e s u l t R e p o r t< / symbol>

349 <symbol>node5< / symbol>

350 < / l i s t>

351 < / p a t t e r n>

352 <v a l u e>

353 <symbol> t r u e< / symbol>

354 < / v a l u e>

355 < / p a t t e r n−a s s i g n m e n t>

356 <!−− L o c a t i o n 1 −−>

357 <p a t t e r n−a s s i g n m e n t>

126

358 <p a t t e r n>

359 < l i s t>

360 <symbol>t y p e< / symbol>

361 <symbol> l o c a t i o n 1< / symbol>

362 < / l i s t>

363 < / p a t t e r n>

364 <v a l u e>

365 <symbol> l o c a t i o n< / symbol>

366 < / v a l u e>

367 < / p a t t e r n−a s s i g n m e n t>

368 <p a t t e r n−a s s i g n m e n t>

369 <p a t t e r n>

370 < l i s t>

371 <symbol>checked< / symbol>

372 <symbol> l o c a t i o n 1< / symbol>

373 < / l i s t>

374 < / p a t t e r n>

375 <v a l u e>

376 <symbol> f a l s e< / symbol>

377 < / v a l u e>

378 < / p a t t e r n−a s s i g n m e n t>

379 <p a t t e r n−a s s i g n m e n t>

380 <p a t t e r n>

381 < l i s t>

382 <symbol>s e a r c h e d< / symbol>

383 <symbol> l o c a t i o n 1< / symbol>

384 < / l i s t>

385 < / p a t t e r n>

386 <v a l u e>

387 <symbol> f a l s e< / symbol>

388 < / v a l u e>

389 < / p a t t e r n−a s s i g n m e n t>

127

390 <p a t t e r n−a s s i g n m e n t>

391 <p a t t e r n>

392 < l i s t>

393 <symbol> l a t i t u d e< / symbol>

394 <symbol> l o c a t i o n 1< / symbol>

395 < / l i s t>

396 < / p a t t e r n>

397 <v a l u e>

398 <symbol>39 .504946< / symbol>

399 < / v a l u e>

400 < / p a t t e r n−a s s i g n m e n t>

401 <p a t t e r n−a s s i g n m e n t>

402 <p a t t e r n>

403 < l i s t>

404 <symbol> l o n g i t u d e< / symbol>

405 <symbol> l o c a t i o n 1< / symbol>

406 < / l i s t>

407 < / p a t t e r n>

408 <v a l u e>

409 <symbol>−75.12187< / symbol>

410 < / v a l u e>

411 < / p a t t e r n−a s s i g n m e n t>

412 <!−− L o c a t i o n 2 −−>

413 <p a t t e r n−a s s i g n m e n t>

414 <p a t t e r n>

415 < l i s t>

416 <symbol>t y p e< / symbol>

417 <symbol> l o c a t i o n 2< / symbol>

418 < / l i s t>

419 < / p a t t e r n>

420 <v a l u e>

421 <symbol> l o c a t i o n< / symbol>

128

422 < / v a l u e>

423 < / p a t t e r n−a s s i g n m e n t>

424 <p a t t e r n−a s s i g n m e n t>

425 <p a t t e r n>

426 < l i s t>

427 <symbol>checked< / symbol>

428 <symbol> l o c a t i o n 2< / symbol>

429 < / l i s t>

430 < / p a t t e r n>

431 <v a l u e>

432 <symbol> f a l s e< / symbol>

433 < / v a l u e>

434 < / p a t t e r n−a s s i g n m e n t>

435 <p a t t e r n−a s s i g n m e n t>

436 <p a t t e r n>

437 < l i s t>

438 <symbol>s e a r c h e d< / symbol>

439 <symbol> l o c a t i o n 2< / symbol>

440 < / l i s t>

441 < / p a t t e r n>

442 <v a l u e>

443 <symbol> f a l s e< / symbol>

444 < / v a l u e>

445 < / p a t t e r n−a s s i g n m e n t>

446 <p a t t e r n−a s s i g n m e n t>

447 <p a t t e r n>

448 < l i s t>

449 <symbol> l a t i t u d e< / symbol>

450 <symbol> l o c a t i o n 2< / symbol>

451 < / l i s t>

452 < / p a t t e r n>

453 <v a l u e>

129

454 <symbol>39 .1396< / symbol>

455 < / v a l u e>

456 < / p a t t e r n−a s s i g n m e n t>

457 <p a t t e r n−a s s i g n m e n t>

458 <p a t t e r n>

459 < l i s t>

460 <symbol> l o n g i t u d e< / symbol>

461 <symbol> l o c a t i o n 2< / symbol>

462 < / l i s t>

463 < / p a t t e r n>

464 <v a l u e>

465 <symbol>−76.3875< / symbol>

466 < / v a l u e>

467 < / p a t t e r n−a s s i g n m e n t>

468 <!−− L o c a t i o n 3 −−>

469 <p a t t e r n−a s s i g n m e n t>

470 <p a t t e r n>

471 < l i s t>

472 <symbol>t y p e< / symbol>

473 <symbol> l o c a t i o n 3< / symbol>

474 < / l i s t>

475 < / p a t t e r n>

476 <v a l u e>

477 <symbol> l o c a t i o n< / symbol>

478 < / v a l u e>

479 < / p a t t e r n−a s s i g n m e n t>

480 <p a t t e r n−a s s i g n m e n t>

481 <p a t t e r n>

482 < l i s t>

483 <symbol>checked< / symbol>

484 <symbol> l o c a t i o n 3< / symbol>

485 < / l i s t>

130

486 < / p a t t e r n>

487 <v a l u e>

488 <symbol> f a l s e< / symbol>

489 < / v a l u e>

490 < / p a t t e r n−a s s i g n m e n t>

491 <p a t t e r n−a s s i g n m e n t>

492 <p a t t e r n>

493 < l i s t>

494 <symbol>s e a r c h e d< / symbol>

495 <symbol> l o c a t i o n 3< / symbol>

496 < / l i s t>

497 < / p a t t e r n>

498 <v a l u e>

499 <symbol> f a l s e< / symbol>

500 < / v a l u e>

501 < / p a t t e r n−a s s i g n m e n t>

502 <p a t t e r n−a s s i g n m e n t>

503 <p a t t e r n>

504 < l i s t>

505 <symbol> l a t i t u d e< / symbol>

506 <symbol> l o c a t i o n 3< / symbol>

507 < / l i s t>

508 < / p a t t e r n>

509 <v a l u e>

510 <symbol>39 .995968< / symbol>

511 < / v a l u e>

512 < / p a t t e r n−a s s i g n m e n t>

513 <p a t t e r n−a s s i g n m e n t>

514 <p a t t e r n>

515 < l i s t>

516 <symbol> l o n g i t u d e< / symbol>

517 <symbol> l o c a t i o n 3< / symbol>

131

518 < / l i s t>

519 < / p a t t e r n>

520 <v a l u e>

521 <symbol>−75.993744< / symbol>

522 < / v a l u e>

523 < / p a t t e r n−a s s i g n m e n t>

524 <!−− L o c a t i o n 4 −−>

525 <p a t t e r n−a s s i g n m e n t>

526 <p a t t e r n>

527 < l i s t>

528 <symbol>t y p e< / symbol>

529 <symbol> l o c a t i o n 4< / symbol>

530 < / l i s t>

531 < / p a t t e r n>

532 <v a l u e>

533 <symbol> l o c a t i o n< / symbol>

534 < / v a l u e>

535 < / p a t t e r n−a s s i g n m e n t>

536 <p a t t e r n−a s s i g n m e n t>

537 <p a t t e r n>

538 < l i s t>

539 <symbol>checked< / symbol>

540 <symbol> l o c a t i o n 4< / symbol>

541 < / l i s t>

542 < / p a t t e r n>

543 <v a l u e>

544 <symbol> f a l s e< / symbol>

545 < / v a l u e>

546 < / p a t t e r n−a s s i g n m e n t>

547 <p a t t e r n−a s s i g n m e n t>

548 <p a t t e r n>

549 < l i s t>

132

550 <symbol>s e a r c h e d< / symbol>

551 <symbol> l o c a t i o n 4< / symbol>

552 < / l i s t>

553 < / p a t t e r n>

554 <v a l u e>

555 <symbol> f a l s e< / symbol>

556 < / v a l u e>

557 < / p a t t e r n−a s s i g n m e n t>

558 <p a t t e r n−a s s i g n m e n t>

559 <p a t t e r n>

560 < l i s t>

561 <symbol> l a t i t u d e< / symbol>

562 <symbol> l o c a t i o n 4< / symbol>

563 < / l i s t>

564 < / p a t t e r n>

565 <v a l u e>

566 <symbol>40 .264767< / symbol>

567 < / v a l u e>

568 < / p a t t e r n−a s s i g n m e n t>

569 <p a t t e r n−a s s i g n m e n t>

570 <p a t t e r n>

571 < l i s t>

572 <symbol> l o n g i t u d e< / symbol>

573 <symbol> l o c a t i o n 4< / symbol>

574 < / l i s t>

575 < / p a t t e r n>

576 <v a l u e>

577 <symbol>−74.475< / symbol>

578 < / v a l u e>

579 < / p a t t e r n−a s s i g n m e n t>

580 <!−− Camera 1 −−>

581 <p a t t e r n−a s s i g n m e n t>

133

582 <p a t t e r n>

583 < l i s t>

584 <symbol>t y p e< / symbol>

585 <symbol>camera1< / symbol>

586 < / l i s t>

587 < / p a t t e r n>

588 <v a l u e>

589 <symbol>camera< / symbol>

590 < / v a l u e>

591 < / p a t t e r n−a s s i g n m e n t>

592 <p a t t e r n−a s s i g n m e n t>

593 <p a t t e r n>

594 < l i s t>

595 <symbol> l a t i t u d e< / symbol>

596 <symbol>camera1< / symbol>

597 < / l i s t>

598 < / p a t t e r n>

599 <v a l u e>

600 <symbol>38 .844494< / symbol>

601 < / v a l u e>

602 < / p a t t e r n−a s s i g n m e n t>

603 <p a t t e r n−a s s i g n m e n t>

604 <p a t t e r n>

605 < l i s t>

606 <symbol> l o n g i t u d e< / symbol>

607 <symbol>camera1< / symbol>

608 < / l i s t>

609 < / p a t t e r n>

610 <v a l u e>

611 <symbol>−75.36093< / symbol>

612 < / v a l u e>

613 < / p a t t e r n−a s s i g n m e n t>

134

614 <p a t t e r n−a s s i g n m e n t>

615 <p a t t e r n>

616 < l i s t>

617 <symbol>inUse< / symbol>

618 <symbol>camera1< / symbol>

619 < / l i s t>

620 < / p a t t e r n>

621 <v a l u e>

622 <symbol> f a l s e< / symbol>

623 < / v a l u e>

624 < / p a t t e r n−a s s i g n m e n t>

625 <!−− Camera 2 −−>

626 <p a t t e r n−a s s i g n m e n t>

627 <p a t t e r n>

628 < l i s t>

629 <symbol>t y p e< / symbol>

630 <symbol>camera2< / symbol>

631 < / l i s t>

632 < / p a t t e r n>

633 <v a l u e>

634 <symbol>camera< / symbol>

635 < / v a l u e>

636 < / p a t t e r n−a s s i g n m e n t>

637 <p a t t e r n−a s s i g n m e n t>

638 <p a t t e r n>

639 < l i s t>

640 <symbol> l a t i t u d e< / symbol>

641 <symbol>camera2< / symbol>

642 < / l i s t>

643 < / p a t t e r n>

644 <v a l u e>

645 <symbol>38 .504158< / symbol>

135

646 < / v a l u e>

647 < / p a t t e r n−a s s i g n m e n t>

648 <p a t t e r n−a s s i g n m e n t>

649 <p a t t e r n>

650 < l i s t>

651 <symbol> l o n g i t u d e< / symbol>

652 <symbol>camera2< / symbol>

653 < / l i s t>

654 < / p a t t e r n>

655 <v a l u e>

656 <symbol>−75.78281< / symbol>

657 < / v a l u e>

658 < / p a t t e r n−a s s i g n m e n t>

659 <p a t t e r n−a s s i g n m e n t>

660 <p a t t e r n>

661 < l i s t>

662 <symbol>inUse< / symbol>

663 <symbol>camera2< / symbol>

664 < / l i s t>

665 < / p a t t e r n>

666 <v a l u e>

667 <symbol> f a l s e< / symbol>

668 < / v a l u e>

669 < / p a t t e r n−a s s i g n m e n t>

670 <!−− Camera 3 −−>

671 <!−−

672 <p a t t e r n−a s s i g n m e n t>

673 <p a t t e r n>

674 < l i s t>

675 <symbol> t y p e< / symbol>

676 <symbol>camera3< / symbol>

677 < / l i s t>

136

678 < / p a t t e r n>

679 <v a l u e>

680 <symbol>camera< / symbol>

681 < / v a l u e>

682 < / p a t t e r n−a s s i g n m e n t>

683 <p a t t e r n−a s s i g n m e n t>

684 <p a t t e r n>

685 < l i s t>

686 <symbol> l a t i t u d e< / symbol>

687 <symbol>camera3< / symbol>

688 < / l i s t>

689 < / p a t t e r n>

690 <v a l u e>

691 <symbol>38 .0221< / symbol>

692 < / v a l u e>

693 < / p a t t e r n−a s s i g n m e n t>

694 <p a t t e r n−a s s i g n m e n t>

695 <p a t t e r n>

696 < l i s t>

697 <symbol> l o n g i t u d e< / symbol>

698 <symbol>camera3< / symbol>

699 < / l i s t>

700 < / p a t t e r n>

701 <v a l u e>

702 <symbol>−76.8882< / symbol>

703 < / v a l u e>

704 < / p a t t e r n−a s s i g n m e n t>

705 <p a t t e r n−a s s i g n m e n t>

706 <p a t t e r n>

707 < l i s t>

708 <symbol>inUse< / symbol>

709 <symbol>camera3< / symbol>

137

710 < / l i s t>

711 < / p a t t e r n>

712 <v a l u e>

713 <symbol> f a l s e< / symbol>

714 < / v a l u e>

715 < / p a t t e r n−a s s i g n m e n t>

716 −−>

717 < / l i s t>

718 < / world−s t a t e>

719 < / p l a n>

1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>

2

3 <network−c o s t>

4 <from−node from=” node1 ”>

5 < t r a n s p o r t a t i o n>0 .00006< / t r a n s p o r t a t i o n>

6 <speed>30< / speed>

7 <to−node t o =” node1 ”>

8 <c o s t>0 . 1< / c o s t>

9 <hops>0< / hops>

10 < / to−node>

11 <to−node t o =” node2 ”>

12 <c o s t>0 . 2< / c o s t>

13 <hops>1< / hops>

14 < / to−node>

15 <to−node t o =” node3 ”>

16 <c o s t>0 . 6< / c o s t>

17 <hops>2< / hops>

18 < / to−node>

19 <to−node t o =” node4 ”>

20 <c o s t>0 . 7< / c o s t>

21 <hops>2< / hops>

138

22 < / to−node>

23 <to−node t o =” node5 ”>

24 <c o s t>0 . 4< / c o s t>

25 <hops>1< / hops>

26 < / to−node>

27 <to−node t o =” node6 ”>

28 <c o s t>1 . 0< / c o s t>

29 <hops>3< / hops>

30 < / to−node>

31 < / from−node>

32 <from−node from=” node2 ”>

33 < t r a n s p o r t a t i o n>0 .000065< / t r a n s p o r t a t i o n>

34 <speed>40< / speed>

35 <to−node t o =” node1 ”>

36 <c o s t>0 . 2< / c o s t>

37 <hops>1< / hops>

38 < / to−node>

39 <to−node t o =” node2 ”>

40 <c o s t>0 . 1< / c o s t>

41 <hops>0< / hops>

42 < / to−node>

43 <to−node t o =” node3 ”>

44 <c o s t>0 . 7< / c o s t>

45 <hops>2< / hops>

46 < / to−node>

47 <to−node t o =” node4 ”>

48 <c o s t>0 . 8< / c o s t>

49 <hops>2< / hops>

50 < / to−node>

51 <to−node t o =” node5 ”>

52 <c o s t>0 . 4< / c o s t>

53 <hops>1< / hops>

139

54 < / to−node>

55 <to−node t o =” node6 ”>

56 <c o s t>1 . 0< / c o s t>

57 <hops>3< / hops>

58 < / to−node>

59 < / from−node>

60 <from−node from=” node3 ”>

61 < t r a n s p o r t a t i o n>0 .000051< / t r a n s p o r t a t i o n>

62 <speed>20< / speed>

63 <to−node t o =” node1 ”>

64 <c o s t>0 . 7< / c o s t>

65 <hops>2< / hops>

66 < / to−node>

67 <to−node t o =” node2 ”>

68 <c o s t>0 . 7< / c o s t>

69 <hops>2< / hops>

70 < / to−node>

71 <to−node t o =” node3 ”>

72 <c o s t>0 . 1< / c o s t>

73 <hops>0< / hops>

74 < / to−node>

75 <to−node t o =” node4 ”>

76 <c o s t>0 . 2< / c o s t>

77 <hops>1< / hops>

78 < / to−node>

79 <to−node t o =” node5 ”>

80 <c o s t>0 . 5< / c o s t>

81 <hops>1< / hops>

82 < / to−node>

83 <to−node t o =” node6 ”>

84 <c o s t>1 . 0< / c o s t>

85 <hops>3< / hops>

140

86 < / to−node>

87 < / from−node>

88 <from−node from=” node4 ”>

89 < t r a n s p o r t a t i o n>0 .000049< / t r a n s p o r t a t i o n>

90 <speed>10< / speed>

91 <to−node t o =” node1 ”>

92 <c o s t>0 . 7< / c o s t>

93 <hops>2< / hops>

94 < / to−node>

95 <to−node t o =” node2 ”>

96 <c o s t>0 . 8< / c o s t>

97 <hops>2< / hops>

98 < / to−node>

99 <to−node t o =” node3 ”>

100 <c o s t>0 . 2< / c o s t>

101 <hops>1< / hops>

102 < / to−node>

103 <to−node t o =” node4 ”>

104 <c o s t>0 . 1< / c o s t>

105 <hops>0< / hops>

106 < / to−node>

107 <to−node t o =” node5 ”>

108 <c o s t>0 . 4< / c o s t>

109 <hops>1< / hops>

110 < / to−node>

111 <to−node t o =” node6 ”>

112 <c o s t>1 . 0< / c o s t>

113 <hops>3< / hops>

114 < / to−node>

115 < / from−node>

116 <from−node from=” node5 ”>

117 < t r a n s p o r t a t i o n>0 .000062< / t r a n s p o r t a t i o n>

141

118 <speed>45< / speed>

119 <to−node t o =” node1 ”>

120 <c o s t>0 . 4< / c o s t>

121 <hops>1< / hops>

122 < / to−node>

123 <to−node t o =” node2 ”>

124 <c o s t>0 . 5< / c o s t>

125 <hops>1< / hops>

126 < / to−node>

127 <to−node t o =” node3 ”>

128 <c o s t>0 . 4< / c o s t>

129 <hops>1< / hops>

130 < / to−node>

131 <to−node t o =” node4 ”>

132 <c o s t>0 . 5< / c o s t>

133 <hops>1< / hops>

134 < / to−node>

135 <to−node t o =” node5 ”>

136 <c o s t>0 . 1< / c o s t>

137 <hops>0< / hops>

138 < / to−node>

139 <to−node t o =” node6 ”>

140 <c o s t>1 . 0< / c o s t>

141 <hops>3< / hops>

142 < / to−node>

143 < / from−node>

144 <from−node from=” node6 ”>

145 < t r a n s p o r t a t i o n>0 .000053< / t r a n s p o r t a t i o n>

146 <speed>15< / speed>

147 <to−node t o =” node1 ”>

148 <c o s t>1 . 0< / c o s t>

149 <hops>3< / hops>

142

150 < / to−node>

151 <to−node t o =” node2 ”>

152 <c o s t>1 . 0< / c o s t>

153 <hops>3< / hops>

154 < / to−node>

155 <to−node t o =” node3 ”>

156 <c o s t>1 . 0< / c o s t>

157 <hops>3< / hops>

158 < / to−node>

159 <to−node t o =” node4 ”>

160 <c o s t>1 . 0< / c o s t>

161 <hops>3< / hops>

162 < / to−node>

163 <to−node t o =” node5 ”>

164 <c o s t>1 . 0< / c o s t>

165 <hops>3< / hops>

166 < / to−node>

167 <to−node t o =” node6 ”>

168 <c o s t>1 . 0< / c o s t>

169 <hops>3< / hops>

170 < / to−node>

171 < / from−node>

172 <from−node from=” camera1 ”>

173 < r e s o l u t i o n>3 . 2< / r e s o l u t i o n>

174 < / from−node>

175 <from−node from=” camera2 ”>

176 < r e s o l u t i o n>8 . 0< / r e s o l u t i o n>

177 < / from−node>

178 <from−node from=” camera3 ”>

179 < r e s o l u t i o n>1 0 . 0< / r e s o l u t i o n>

180 < / from−node>

181 < / network−c o s t>

143

